File size: 7,654 Bytes
8af06a5
 
 
 
 
 
 
 
 
 
 
c057548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8af06a5
 
 
 
 
 
 
 
 
 
 
 
c057548
8af06a5
 
 
c057548
8af06a5
 
 
 
c057548
 
8af06a5
 
 
 
 
7108100
 
 
 
 
 
 
 
c057548
 
7108100
 
 
c057548
7108100
 
 
c057548
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import streamlit as st
import spacy
import wikipediaapi
import wikipedia
from wikipedia.exceptions import DisambiguationError
from transformers import TFAutoModel, AutoTokenizer
import numpy as np
import pandas as pd
import faiss
import datetime
import time


try:
    nlp = spacy.load("en_core_web_sm")
except:
    spacy.cli.download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

wh_words = ['what', 'who', 'how', 'when', 'which']

def get_concepts(text):
    text = text.lower()
    doc = nlp(text)
    concepts = []
    for chunk in doc.noun_chunks:
        if chunk.text not in wh_words:
            concepts.append(chunk.text)
    return concepts

def get_passages(text, k=100):
    doc = nlp(text)
    passages = []
    passage_len = 0
    passage = ""
    sents = list(doc.sents)
    for i in range(len(sents)):
        sen = sents[i]
        passage_len += len(sen)
        if passage_len >= k:
            passages.append(passage)
            passage = sen.text
            passage_len = len(sen)
            continue
        elif i == (len(sents) - 1):
            passage += " " + sen.text
            passages.append(passage)
            passage = ""
            passage_len = 0
            continue
        passage += " " + sen.text
    return passages

def get_dicts_for_dpr(concepts, n_results=20, k=100):
    dicts = []
    for concept in concepts:
        wikis = wikipedia.search(concept, results=n_results)
        st.write(f"{concept} No of Wikis: {len(wikis)}")
        for wiki in wikis:
            try:
                html_page = wikipedia.page(title=wiki, auto_suggest=False)
            except DisambiguationError:
                continue
            htmlResults = html_page.content
            passages = get_passages(htmlResults, k=k)
            for passage in passages:
                i_dicts = {}
                i_dicts['text'] = passage
                i_dicts['title'] = wiki
                dicts.append(i_dicts)
    return dicts

passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")

def get_title_text_combined(passage_dicts):
    res = []
    for p in passage_dicts:
        res.append(tuple((p['title'], p['text'])))
    return res

def extracted_passage_embeddings(processed_passages, max_length=156):
    passage_inputs = p_tokenizer.batch_encode_plus(
                    processed_passages,
                    add_special_tokens=True,
                    truncation=True,
                    padding="max_length",
                    max_length=max_length,
                    return_token_type_ids=True
                )
    passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']), 
                                            np.array(passage_inputs['token_type_ids'])], 
                                            batch_size=64, 
                                            verbose=1)
    return passage_embeddings

def extracted_query_embeddings(queries, max_length=64):
    query_inputs = q_tokenizer.batch_encode_plus(
        queries,
        add_special_tokens=True,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_token_type_ids=True
    )
    
    query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']),
        np.array(query_inputs['attention_mask']),
        np.array(query_inputs['token_type_ids'])],
        batch_size=1,
        verbose=1)
    return query_embeddings

def get_pagetext(page):
    s = str(page).replace("/t","")
    return s

def get_wiki_summary(search):
    wiki_wiki = wikipediaapi.Wikipedia('en')
    page = wiki_wiki.page(search)                                   


def get_wiki_summaryDF(search):
    wiki_wiki = wikipediaapi.Wikipedia('en')
    page = wiki_wiki.page(search)

    isExist = page.exists()
    if not isExist:
        return isExist, "Not found", "Not found", "Not found", "Not found"

    pageurl = page.fullurl
    pagetitle = page.title
    pagesummary = page.summary[0:60]
    pagetext = get_pagetext(page.text)

    backlinks = page.backlinks
    linklist = ""
    for link in backlinks.items():
      pui = link[0]
      linklist += pui + " ,  "
      a=1 
      
    categories = page.categories
    categorylist = ""
    for category in categories.items():
      pui = category[0]
      categorylist += pui + " ,  "
      a=1     
    
    links = page.links
    linklist2 = ""
    for link in links.items():
      pui = link[0]
      linklist2 += pui + " ,  "
      a=1 
      
    sections = page.sections
    
    ex_dic = {
      'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
      'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
    }

    df = pd.DataFrame(ex_dic)
    
    return df


def save_message(name, message):
    now = datetime.datetime.now()
    timestamp = now.strftime("%Y-%m-%d %H:%M:%S")
    with open("chat.txt", "a") as f:
        f.write(f"{timestamp} - {name}: {message}\n")

def press_release():
    st.markdown("""🎉🎊 Breaking News! 📢📣

Introducing StreamlitWikipediaChat - the ultimate way to chat with Wikipedia and the whole world at the same time! 🌎📚👋

Are you tired of reading boring articles on Wikipedia? Do you want to have some fun while learning new things? Then StreamlitWikipediaChat is just the thing for you! 😃💻

With StreamlitWikipediaChat, you can ask Wikipedia anything you want and get instant responses! Whether you want to know the capital of Madagascar or how to make a delicious chocolate cake, Wikipedia has got you covered. 🍰🌍

But that's not all! You can also chat with other people from around the world who are using StreamlitWikipediaChat at the same time. It's like a virtual classroom where you can learn from and teach others. 🌐👨‍🏫👩‍🏫

And the best part? StreamlitWikipediaChat is super easy to use! All you have to do is type in your question and hit send. That's it! 🤯🙌

So, what are you waiting for? Join the fun and start chatting with Wikipedia and the world today! 😎🎉

StreamlitWikipediaChat - where learning meets fun! 🤓🎈""")


def main():
    st.title("Streamlit Chat")

    name = st.text_input("Enter your name")
    message = st.text_input("Enter a topic to share from Wikipedia")
    if st.button("Submit"):
        
        # wiki
        df = get_wiki_summaryDF(message)
        
        save_message(name, message)
        save_message(name, df)
        
        st.text("Message sent!")

    
    st.text("Chat history:")
    with open("chat.txt", "a+") as f:
        f.seek(0)
        chat_history = f.read()
    #st.text(chat_history)
    st.markdown(chat_history)

    countdown = st.empty()
    t = 60
    while t:
        mins, secs = divmod(t, 60)
        countdown.text(f"Time remaining: {mins:02d}:{secs:02d}")
        time.sleep(1)
        t -= 1
        if t == 0:
            countdown.text("Time's up!")
            with open("chat.txt", "a+") as f:
                f.seek(0)
                chat_history = f.read()
            #st.text(chat_history)
            st.markdown(chat_history)

            press_release()
            
            t = 15

if __name__ == "__main__":
    main()