File size: 61,288 Bytes
e63c12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
import streamlit as st
import streamlit.components.v1 as components
import huggingface_hub
import gradio_client as gc

import os
import json
import random
import base64
import glob
import math
import openai
import pytz
import re
import requests
import textract
import time
import zipfile
import dotenv

from gradio_client import Client
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from io import BytesIO
from openai import ChatCompletion
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from xml.etree import ElementTree as ET
from PIL import Image
from urllib.parse import quote  # Ensure this import is included


## Show examples
sample_outputs = {
    'output_placeholder': 'The LLM will provide an answer to your question here...',
    'search_placeholder': '1. What is MoE, Multi Agent Systems, Self Rewarding AI, Semantic and Episodic memory, What is AutoGen, ChatDev, Omniverse, Lumiere, SORA?'
}

def save_file(content, file_type):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    file_name = f"{file_type}_{timestamp}.md"
    with open(file_name, "w") as file:
        file.write(content)
    return file_name

def load_file(file_name):
    with open(file_name, "r") as file:
        content = file.read()
    return content


# HTML5 based Speech Synthesis (Text to Speech in Browser)
@st.cache_resource
def SpeechSynthesis(result):
    documentHTML5='''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }
        </script>
    </head>
    <body>
        <h1>🔊 Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">
    '''
    documentHTML5 = documentHTML5 + result
    documentHTML5 = documentHTML5 + '''
        </textarea>
        <br>
        <button onclick="readAloud()">🔊 Read Aloud</button>
    </body>
    </html>
    '''
    components.html(documentHTML5, width=1280, height=300)

def parse_to_markdown(text):
    # Split text into fields by | character
    fields = text.split("|")
    
    markdown = ""
    for field in fields:
        # Remove leading/trailing quotes and whitespace
        field = field.strip(" '")
        
        # Add field to markdown with whitespace separator
        markdown += field + "\n\n"

    return markdown
    
def search_arxiv(query):
    
    # Show ArXiv Scholary Articles! ----------------*************-------------***************----------------------------------------
    # st.title("▶️ Semantic and Episodic Memory System")
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    
    search_query = query
    #top_n_results = st.slider(key='topnresults', label="Top n results as context", min_value=4, max_value=100, value=100)
    #search_source = st.sidebar.selectbox(key='searchsource', label="Search Source", ["Semantic Search - up to 10 Mar 2024", "Arxiv Search - Latest - (EXPERIMENTAL)"])
    search_source = "Arxiv Search - Latest - (EXPERIMENTAL)" # "Semantic Search - up to 10 Mar 2024"
    #llm_model = st.sidebar.selectbox(key='llmmodel', label="LLM Model", ["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2", "google/gemma-7b-it", "None"])
    llm_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"

    
    st.sidebar.markdown('### 🔎 ' + query)
    result = client.predict(
        search_query,
        100,
        search_source,
        llm_model,
        api_name="/update_with_rag_md"
    )
    result = parse_to_markdown(result)
    st.markdown(result)
    arxiv_results = st.text_area("ArXiv Results: ", value=result, height=700)
    result = str(result) # cast as string for these - check content length and format if encoding changes..
    result=result.replace('\\n', ' ')
    SpeechSynthesis(result)  # Search History Reader / Writer IO Memory - Audio at Same time as Reading.
    filename=generate_filename(result, "md")
    create_file(filename, query, result, should_save)

    
    #file_type = st.radio("Select Which Type of Memory You Prefer:", ("Semantic", "Episodic"))
    #if st.button("Save"):
    #    file_name = save_file(result, file_type)
    #    st.success(f"File saved: {file_name}")

    saved_files = [f for f in os.listdir(".") if f.endswith(".md")]
    selected_file = st.sidebar.selectbox("Saved Files", saved_files)

    if selected_file:
        file_content = load_file(selected_file)
        st.sidebar.markdown(file_content)
        if st.sidebar.button("🗑️ Delete"):
            os.remove(selected_file)
            st.warning(f"File deleted: {selected_file}")
    return result
            
# Set page configuration with a title and favicon
st.set_page_config(
    page_title="🚀🌌World Ship Design Program",
    page_icon="🔍🚀🌌📖",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': "https://huggingface.co/spaces/awacke1",
        'About': "# 🚀🌌World-Ship-Design"
    }
)

# Prompts for App, for App Product, and App Product Code
PromptPrefix = 'Create a specification with streamlit functions creating markdown outlines and tables rich with appropriate emojis for methodical step by step rules defining the concepts at play.  Use story structure architect rules to plan, structure and write three dramatic situations to include in the rules and how to play by matching the theme for topic of '
PromptPrefix2 = 'Create a streamlit python user app with full code listing to create a UI implementing the using streamlit, gradio, huggingface to create user interface elements like emoji buttons, sliders, drop downs, and data interfaces like dataframes to show tables, session_statematching this ruleset and thematic story plot line: '
PromptPrefix3 = 'Create a HTML5 aframe and javascript app using appropriate libraries to create a word game simulation with advanced libraries like aframe to render 3d scenes creating moving entities that stay within a bounding box but show text and animation in 3d for inventory, components and story entities.  Show full code listing.  Add a list of new random entities say 3 of a few different types to any list appropriately and use emojis to make things easier and fun to read.  Use appropriate emojis in labels.  Create the UI to implement storytelling in the style of a dungeon master, with features using three emoji appropriate text plot twists and recurring interesting funny fascinating and complex almost poetic named characters with genius traits and file IO, randomness, ten point choice lists, math distribution tradeoffs, witty humorous dilemnas with emoji , rewards, variables, reusable functions with parameters, and data driven app with python libraries and streamlit components for Javascript and HTML5. Use appropriate emojis for labels to summarize and list parts, function, conditions for topic:'

# Function to display the entire glossary in a grid format with links
def display_glossary_grid(roleplaying_glossary):
    search_urls = {
        "📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
        "🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "🎥": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "🐦": lambda k: f"https://twitter.com/search?q={quote(k)}",
        "🎲": lambda k: f"https://huggingface.co/spaces/awacke1/World-Ship-Design?q={quote(k)}",  # this url plus query!
        "🃏": lambda k: f"https://huggingface.co/spaces/awacke1/World-Ship-Design?q={quote(k)}-{quote(PromptPrefix)}",  # this url plus query!
        "📚": lambda k: f"https://huggingface.co/spaces/awacke1/World-Ship-Design?q={quote(k)}-{quote(PromptPrefix2)}",  # this url plus query!
        "🔬": lambda k: f"https://huggingface.co/spaces/awacke1/World-Ship-Design?q={quote(k)}-{quote(PromptPrefix3)}",  # this url plus query!
    }

    for category, details in roleplaying_glossary.items():
        st.write(f"### {category}")
        cols = st.columns(len(details))  # Create dynamic columns based on the number of games
        for idx, (game, terms) in enumerate(details.items()):
            with cols[idx]:
                st.markdown(f"#### {game}")
                for term in terms:
                    gameterm = category + ' - ' + game + ' - ' + term
                    links_md = ' '.join([f"[{emoji}]({url(gameterm)})" for emoji, url in search_urls.items()])
                    #links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
                    st.markdown(f"{term} {links_md}", unsafe_allow_html=True)
                    
def display_glossary_entity(k):
    search_urls = {
        "📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
        "🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "🎥": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "🐦": lambda k: f"https://twitter.com/search?q={quote(k)}",
        "🎲": lambda k: f"https://huggingface.co/spaces/awacke1/World-Ship-Design?q={quote(k)}",  # this url plus query!
        "🃏": lambda k: f"https://huggingface.co/spaces/awacke1/World-Ship-Design?q={quote(k)}-{quote(PromptPrefix)}",  # this url plus query!
        "📚": lambda k: f"https://huggingface.co/spaces/awacke1/World-Ship-Design?q={quote(k)}-{quote(PromptPrefix2)}",  # this url plus query!
        "🔬": lambda k: f"https://huggingface.co/spaces/awacke1/World-Ship-Design?q={quote(k)}-{quote(PromptPrefix3)}",  # this url plus query!
    }
    links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
    st.markdown(f"{k} {links_md}", unsafe_allow_html=True)



#st.markdown('''### 📖✨🔍 Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP ''')

roleplaying_glossary = {
"🤖 AI Concepts": {
"MoE (Mixture of Experts) 🧠": [
"What are Multi Agent Systems for Health",
"What is Mixture of Experts for Health",
"What are Semantic and Episodic Memory and what is Mirroring for Behavioral Health",
"What are Self Rewarding AI Systems for Health",
"How are AGI and AMI systems created using Multi Agent Systems and Mixture of Experts for Health"
],
"Multi Agent Systems (MAS) 🤝": [
"Distributed AI systems",
"Autonomous agents interacting",
"Cooperative and competitive behavior",
"Decentralized problem-solving",
"Applications in robotics, simulations, and more"
],
"Self Rewarding AI 🎁": [
"Intrinsic motivation for AI agents",
"Autonomous goal setting and achievement",
"Exploration and curiosity-driven learning",
"Potential for open-ended development",
"Research area in reinforcement learning"
],
"Semantic and Episodic Memory 📚": [
"Two types of long-term memory",
"Semantic: facts and general knowledge",
"Episodic: personal experiences and events",
"Crucial for AI systems to understand and reason",
"Research in knowledge representation and retrieval"
]
},
"🛠️ AI Tools & Platforms": {
"AutoGen 🔧": [
"Automated machine learning (AutoML) tool",
"Generates AI models based on requirements",
"Simplifies AI development process",
"Accessible to non-experts",
"Integration with various data sources"
],
"ChatDev 💬": [
"Platform for building chatbots and conversational AI",
"Drag-and-drop interface for designing chat flows",
"Pre-built templates and integrations",
"Supports multiple messaging platforms",
"Analytics and performance tracking"
],
"Omniverse 🌐": [
"Nvidia's 3D simulation and collaboration platform",
"Physically accurate virtual worlds",
"Supports AI training and testing",
"Used in industries like robotics, architecture, and gaming",
"Enables seamless collaboration and data exchange"
],
"Lumiere 🎥": [
"AI-powered video analytics platform",
"Extracts insights and metadata from video content",
"Facial recognition and object detection",
"Sentiment analysis and scene understanding",
"Applications in security, media, and marketing"
],
"SORA 🏗️": [
"Scalable Open Research Architecture",
"Framework for distributed AI research and development",
"Modular and extensible design",
"Facilitates collaboration and reproducibility",
"Supports various AI algorithms and models"
]
},
"🚀 World Ship Design": {
"ShipHullGAN 🌊": [
"Generic parametric modeller for ship hull design",
"Uses deep convolutional generative adversarial networks (GANs)",
"Trained on diverse ship hull designs",
"Generates geometrically valid and feasible ship hull shapes",
"Enables exploration of traditional and novel designs",
"From the paper 'ShipHullGAN: A generic parametric modeller for ship hull design using deep convolutional generative model'"
],
"B\'ezierGAN 📐": [
"Automatic generation of smooth curves",
"Maps low-dimensional parameters to B\'ezier curve points",
"Generates diverse and realistic curves",
"Preserves shape variation in latent space",
"Useful for design optimization and exploration",
"From the paper 'B\'ezierGAN: Automatic Generation of Smooth Curves from Interpretable Low-Dimensional Parameters'"
],
"PlotMap 🗺️": [
"Automated game world layout design",
"Uses reinforcement learning to place plot elements",
"Considers spatial constraints from story",
"Enables procedural content generation for games",
"Handles multi-modal inputs (images, locations, text)",
"From the paper 'PlotMap: Automated Layout Design for Building Game Worlds'"
],
"ShipGen ⚓": [
"Diffusion model for parametric ship hull generation",
"Considers multiple objectives and constraints",
"Generates tabular parametric design vectors",
"Uses classifier guidance to improve hull quality",
"Reduces design time and generates high-performing hulls",
"From the paper 'ShipGen: A Diffusion Model for Parametric Ship Hull Generation with Multiple Objectives and Constraints'"
],
"Ship-D 📊": [
"Large dataset of ship hulls for machine learning",
"30,000 hulls with design and performance data",
"Includes parameterization, mesh, point cloud, images",
"Measures hydrodynamic drag under different conditions",
"Enables data-driven ship design optimization",
"From the paper 'Ship-D: Ship Hull Dataset for Design Optimization using Machine Learning'"
]
},
"🌌 Exploring the Universe":{
"Cosmos 🪐": [
"Object-centric world modeling framework",
"Designed for compositional generalization",
"Uses neurosymbolic grounding",
"Neurosymbolic scene encodings and attention mechanism",
"Computes symbolic attributes using vision-language models",
"From the paper 'Neurosymbolic Grounding for Compositional World Models'"
],
"Active World Model Learning 🔭": [
"Curiosity-driven exploration for world model learning",
"Constructs agent to visually explore 3D environment",
"Uses progress-based curiosity signal ($\gamma$-Progress)",
"Overcomes 'white noise problem' in exploration",
"Outperforms baseline exploration strategies",
"From the paper 'Active World Model Learning with Progress Curiosity'"
],
"Probabilistic Worldbuilding 🎲": [
"Symbolic Bayesian model for semantic parsing and reasoning",
"Aims for general natural language understanding",
"Expresses meaning in human-readable formal language",
"Designed to generalize to new domains and tasks",
"Outperforms baselines on out-of-domain question answering",
"From the paper 'Towards General Natural Language Understanding with Probabilistic Worldbuilding'"
],
"Language-Guided World Models 💬": [
"Capture environment dynamics from language descriptions",
"Allow efficient communication and control",
"Enable self-learning from human instruction texts",
"Tested on challenging benchmark requiring generalization",
"Improves interpretability and safety via generated plans",
"From the paper 'Language-Guided World Models: A Model-Based Approach to AI Control'"

]
}
}

@st.cache_resource
def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        data = file.read()
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.py':
        mime_type = 'text/plain'
    elif ext == '.xlsx':
        mime_type = 'text/plain'
    elif ext == '.csv':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    elif ext == '.wav':
        mime_type = 'audio/wav'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href


@st.cache_resource
def create_zip_of_files(files): # ----------------------------------
    zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name
    
@st.cache_resource
def get_zip_download_link(zip_file):
    with open(zip_file, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
    return href # ----------------------------------

def FileSidebar():
    # ----------------------------------------------------- File Sidebar for Jump Gates ------------------------------------------
    # Compose a file sidebar of markdown md files:
    all_files = glob.glob("*.md")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order
    if st.sidebar.button("🗑 Delete All Text"):
        for file in all_files:
            os.remove(file)
        st.experimental_rerun()
    if st.sidebar.button("⬇️ Download All"):
        zip_file = create_zip_of_files(all_files)
        st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
    file_contents=''
    next_action=''
    for file in all_files:
        col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])  # adjust the ratio as needed
        with col1:
            if st.button("🌐", key="md_"+file):  # md emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='md'
        with col2:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("📂", key="open_"+file):  # open emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='open'
        with col4:
            if st.button("🔍", key="read_"+file):  # search emoji button
                with open(file, 'r') as f:
                    file_contents = f.read()
                    next_action='search'
        with col5:
            if st.button("🗑", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()

                
    if len(file_contents) > 0:
        if next_action=='open':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
        #try:
            if st.button("🔍", key="filecontentssearch"):
                #search_glossary(file_content_area)
                filesearch = PromptPrefix + file_content_area
                st.markdown(filesearch)
                if st.button(key=rerun, label='🔍Re-Spec' ):
                    search_glossary(filesearch)
        #except:
            st.markdown('GPT is sleeping.  Restart ETA 30 seconds.')

        if next_action=='md':
            st.markdown(file_contents)
            buttonlabel = '🔍Run'
            if st.button(key='Runmd', label = buttonlabel):
                user_prompt = file_contents
            #try:
                search_glossary(file_contents)
            #except:
                st.markdown('GPT is sleeping.  Restart ETA 30 seconds.')

        if next_action=='search':
            file_content_area = st.text_area("File Contents:", file_contents, height=500)
            user_prompt = file_contents
        #try:
            #search_glossary(file_contents)
            filesearch = PromptPrefix2 + file_content_area
            st.markdown(filesearch)
            if st.button(key=rerun, label='🔍Re-Code' ):
                search_glossary(filesearch)
                    
        #except:
            st.markdown('GPT is sleeping.  Restart ETA 30 seconds.')
    # ----------------------------------------------------- File Sidebar for Jump Gates ------------------------------------------
FileSidebar()


    
# ---- Art Card Sidebar with Random Selection of image:
def get_image_as_base64(url):
    response = requests.get(url)
    if response.status_code == 200:
        # Convert the image to base64
        return base64.b64encode(response.content).decode("utf-8")
    else:
        return None
        
def create_download_link(filename, base64_str):
    href = f'<a href="data:file/png;base64,{base64_str}" download="{filename}">Download Image</a>'
    return href
image_urls = [
    "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/cfhJIasuxLkT5fnaAE6Gj.png",
    "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/UMo4oWNrrd6RLLzsFxQAi.png",
    "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/o_EH4cTs5Qxiu7xTZw9I3.png",
    "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/cmCZ5RTdSx3usMm7MwwWK.png",
]

selected_image_url = random.choice(image_urls)
selected_image_base64 = get_image_as_base64(selected_image_url)
if selected_image_base64 is not None:
    with st.sidebar:
        st.markdown(f"![image](data:image/png;base64,{selected_image_base64})")
else:
    st.sidebar.write("Failed to load the image.")

# Ensure the directory for storing scores exists
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)

# Function to generate a unique key for each button, including an emoji
def generate_key(label, header, idx):
    return f"{header}_{label}_{idx}_key"

# Function to increment and save score
def update_score(key, increment=1):
    score_file = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(score_file):
        with open(score_file, "r") as file:
            score_data = json.load(file)
    else:
        score_data = {"clicks": 0, "score": 0}
    score_data["clicks"] += 1
    score_data["score"] += increment
    with open(score_file, "w") as file:
        json.dump(score_data, file)
    return score_data["score"]

# Function to load score
def load_score(key):
    score_file = os.path.join(score_dir, f"{key}.json")
    if os.path.exists(score_file):
        with open(score_file, "r") as file:
            score_data = json.load(file)
        return score_data["score"]
    return 0

@st.cache_resource
def search_glossary(query):  # 🔍Run--------------------------------------------------------
    for category, terms in roleplaying_glossary.items():
        if query.lower() in (term.lower() for term in terms):
            st.markdown(f"#### {category}")
            st.write(f"- {query}")
    all=""

    # 🔍Run 1 - plain query
    #response = chat_with_model(query)  
    #response1 = chat_with_model45(query) 
    
    #all = query + '   ' + response1
    #st.write('🔍Run 1 is Complete.')

    # ArXiv searcher ~-<>-~
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    response1 = client.predict(
    		query,	
    		10,	
    		"Semantic Search - up to 10 Mar 2024",	# Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)']  in 'Search Source' Dropdown component
    		"mistralai/Mixtral-8x7B-Instruct-v0.1",	# Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']  in 'LLM Model' Dropdown component
    		api_name="/update_with_rag_md"
    )
    st.write('🔍Run of Multi-Agent Systems is Complete')

# experimental 45 - - - - - - - - - - - - -<><><><><>
        
    # 🔍Run PaperSummarizer
    PaperSummarizer = '  Create a paper summary as a markdown table with paper links clustering the features writing short markdown emoji outlines to extract three main ideas from each of the ten summaries. For each one create three simple points led by an emoji of the main three steps needed as method step process for implementing the idea as a single app.py streamlit python app.  '
    # = str(result).replace('\n', ' ').replace('|', '   ')
    response2 = chat_with_model45(PaperSummarizer + str(response1))        
    st.write('🔍Run 3 - Paper Summarizer is Complete.')

    # 🔍Run AppSpecifier
    AppSpecifier = '  Design and write a streamlit python code listing and specification that implements each scientific method steps as ten functions keeping specification in a markdown table in the function comments with original paper link to outline the AI pipeline ensemble implementing code as full plan to build.'
    #result = str(result).replace('\n', ' ').replace('|', '   ')
    response3 = chat_with_model45(AppSpecifier + str(response2))        
    st.write('🔍Run 4 - AppSpecifier is Complete.')
    
    # 🔍Run PythonAppCoder
    PythonAppCoder = '  Complete this streamlit python app implementing the functions in detail using appropriate python libraries and streamlit user interface elements.  Show full code listing for the completed detail app as full code listing with no comments or commentary.  '
    #result = str(result).replace('\n', ' ').replace('|', '   ')
    response4 = chat_with_model45(PythonAppCoder + str(response3))        
    st.write('🔍Run Python AppCoder is Complete.')

# experimental 45 - - - - - - - - - - - - -<><><><><>
    
    responseAll = '# Query: ' + query  + '# Summary: ' +  str(response2)  + '# Streamlit App Specifier: ' +  str(response3)  + '# Complete Streamlit App: ' +  str(response4) + '# Scholarly Article Links References: ' + str(response1)
    filename = generate_filename(responseAll, "md")
    create_file(filename, query, responseAll, should_save)
    
    return responseAll    # 🔍Run--------------------------------------------------------

    
# Function to display the glossary in a structured format
def display_glossary(glossary, area):
    if area in glossary:
        st.subheader(f"📘 Glossary for {area}")
        for game, terms in glossary[area].items():
            st.markdown(f"### {game}")
            for idx, term in enumerate(terms, start=1):
                st.write(f"{idx}. {term}")


# Function to display the entire glossary in a grid format with links
def display_glossary_grid(roleplaying_glossary):
    search_urls = {
        "📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
        "🔍": lambda k: f"https://www.google.com/search?q={quote(k)}",
        "▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
        "🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}",
        "🎲": lambda k: f"https://huggingface.co/spaces/awacke1/World-Ship-Design?q={quote(k)}",  # this url plus query!
        
    }

    for category, details in roleplaying_glossary.items():
        st.write(f"### {category}")
        cols = st.columns(len(details))  # Create dynamic columns based on the number of games
        for idx, (game, terms) in enumerate(details.items()):
            with cols[idx]:
                st.markdown(f"#### {game}")
                for term in terms:
                    links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
                    st.markdown(f"{term} {links_md}", unsafe_allow_html=True)


@st.cache_resource
def display_videos_and_links():
    video_files = [f for f in os.listdir('.') if f.endswith('.mp4')]
    if not video_files:
        st.write("No MP4 videos found in the current directory.")
        return
    
    video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
    num_columns=4
    cols = st.columns(num_columns)  # Define num_columns columns outside the loop
    col_index = 0  # Initialize column index

    for video_file in video_files_sorted:
        with cols[col_index % num_columns]:  # Use modulo 2 to alternate between the first and second column
            # Embedding video with autoplay and loop using HTML
            #video_html = ("""<video width="100%" loop autoplay>   <source src="{video_file}" type="video/mp4">Your browser does not support the video tag.</video>""")
            #st.markdown(video_html, unsafe_allow_html=True)
            k = video_file.split('.')[0]  # Assumes keyword is the file name without extension
            st.video(video_file, format='video/mp4', start_time=0)
            display_glossary_entity(k)  
        col_index += 1  # Increment column index to place the next video in the next column

@st.cache_resource
def display_images_and_wikipedia_summariesold():
    image_files = [f for f in os.listdir('.') if f.endswith('.png')]
    if not image_files:
        st.write("No PNG images found in the current directory.")
        return
    image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
    num_columns=4

    grid_sizes = [len(f.split('.')[0]) for f in image_files_sorted]
    col_sizes = ['small' if size <= 4 else 'medium' if size <= 8 else 'large' for size in grid_sizes]
    num_columns_map = {"small": 4, "medium": 3, "large": 2}
    current_grid_size = 0
    for image_file, col_size in zip(image_files_sorted, col_sizes):
        if current_grid_size != num_columns_map[col_size]:
            cols = st.columns(num_columns_map[col_size])
            current_grid_size = num_columns_map[col_size]
            col_index = 0
            with cols[col_index % current_grid_size]:
                image = Image.open(image_file)
                st.image(image, caption=image_file, use_column_width=True)
                k = image_file.split('.')[0]  # Assumes keyword is the file name without extension
                display_glossary_entity(k)

@st.cache_resource
def display_images_and_wikipedia_summaries(num_columns=4):
    image_files = [f for f in os.listdir('.') if f.endswith('.png')]
    if not image_files:
        st.write("No PNG images found in the current directory.")
        return

    image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))

    cols = st.columns(num_columns)  # Use specified num_columns for layout
    col_index = 0  # Initialize column index for cycling through columns

    for image_file in image_files_sorted:
        with cols[col_index % num_columns]:  # Cycle through columns based on num_columns
            image = Image.open(image_file)
            st.image(image, caption=image_file, use_column_width=True)
            k = image_file.split('.')[0]  # Assumes keyword is the file name without extension
            display_glossary_entity(k)
        col_index += 1  # Increment to move to the next column in the next iteration




def get_all_query_params(key):
    return st.query_params().get(key, [])

def clear_query_params():
    st.query_params()  
                
# Function to display content or image based on a query
@st.cache_resource
def display_content_or_image(query):
    for category, terms in transhuman_glossary.items():
        for term in terms:
            if query.lower() in term.lower():
                st.subheader(f"Found in {category}:")
                st.write(term)
                return True  # Return after finding and displaying the first match
    image_dir = "images"  # Example directory where images are stored
    image_path = f"{image_dir}/{query}.png"  # Construct image path with query
    if os.path.exists(image_path):
        st.image(image_path, caption=f"Image for {query}")
        return True
    st.warning("No matching content or image found.")
    return False
    
game_emojis = {
    "Dungeons and Dragons": "🐉",
    "Call of Cthulhu": "🐙",
    "GURPS": "🎲",
    "Pathfinder": "🗺️",
    "Kindred of the East": "🌅",
    "Changeling": "🍃",
}

topic_emojis = {
    "Core Rulebooks": "📚",
    "Maps & Settings": "🗺️",
    "Game Mechanics & Tools": "⚙️",
    "Monsters & Adversaries": "👹",
    "Campaigns & Adventures": "📜",
    "Creatives & Assets": "🎨",
    "Game Master Resources": "🛠️",
    "Lore & Background": "📖",
    "Character Development": "🧍",
    "Homebrew Content": "🔧",
    "General Topics": "🌍",
}

# Adjusted display_buttons_with_scores function
def display_buttons_with_scores():
    for category, games in roleplaying_glossary.items():
        category_emoji = topic_emojis.get(category, "🔍")  # Default to search icon if no match
        st.markdown(f"## {category_emoji} {category}")
        for game, terms in games.items():
            game_emoji = game_emojis.get(game, "🎮")  # Default to generic game controller if no match
            for term in terms:
                key = f"{category}_{game}_{term}".replace(' ', '_').lower()
                score = load_score(key)
                if st.button(f"{game_emoji} {category}  {game} {term} {score}", key=key):
                    update_score(key)
                    # Create a dynamic query incorporating emojis and formatting for clarity
                    query_prefix = f"{category_emoji} {game_emoji} ** {category} - {game} - {term} - **"
                    # ----------------------------------------------------------------------------------------------
                    #query_body = f"Create a detailed outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
                    query_body = f"Create a streamlit python app.py that produces a detailed markdown outline and emoji laden user interface with labels with the entity name and emojis in all labels with a set of streamlit UI components with drop down lists and dataframes and buttons with expander and sidebar for the app to run the data as default values mostly in text boxes. Feature a 3 point outline sith 3 subpoints each where each line has about six words describing this and also contain appropriate emoji for creating sumamry of all aspeccts of this topic. an outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements."
                    response = search_glossary(query_prefix + query_body)


def fetch_wikipedia_summary(keyword):
    # Placeholder function for fetching Wikipedia summaries
    # In a real app, you might use requests to fetch from the Wikipedia API
    return f"Summary for {keyword}. For more information, visit Wikipedia."

def create_search_url_youtube(keyword):
    base_url = "https://www.youtube.com/results?search_query="
    return base_url + keyword.replace(' ', '+')

def create_search_url_bing(keyword):
    base_url = "https://www.bing.com/search?q="
    return base_url + keyword.replace(' ', '+')

def create_search_url_wikipedia(keyword):
    base_url = "https://www.wikipedia.org/search-redirect.php?family=wikipedia&language=en&search="
    return base_url + keyword.replace(' ', '+')

def create_search_url_google(keyword):
    base_url = "https://www.google.com/search?q="
    return base_url + keyword.replace(' ', '+')

def create_search_url_ai(keyword):
    base_url = "https://huggingface.co/spaces/awacke1/World-Ship-Design?q="
    return base_url + keyword.replace(' ', '+')


def get_all_query_params(key):
    return st.query_params().get(key, [])

def clear_query_params():
    st.query_params()  

# My Inference API Copy
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud'  # Dr Llama
# Meta's Original - Chat HF Free Version:
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
API_KEY = os.getenv('API_KEY')
MODEL1="meta-llama/Llama-2-7b-chat-hf"
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
HF_KEY = os.getenv('HF_KEY')
headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "application/json"
}
key = os.getenv('OPENAI_API_KEY')
prompt = "...."
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")




# 3. Stream Llama Response
# @st.cache_resource
def StreamLLMChatResponse(prompt):
    try:
        endpoint_url = API_URL
        hf_token = API_KEY
        st.write('Running client ' + endpoint_url)
        client = InferenceClient(endpoint_url, token=hf_token)
        gen_kwargs = dict(
            max_new_tokens=512,
            top_k=30,
            top_p=0.9,
            temperature=0.2,
            repetition_penalty=1.02,
            stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
        )
        stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
        report=[]
        res_box = st.empty()
        collected_chunks=[]
        collected_messages=[]
        allresults=''
        for r in stream:
            if r.token.special:
                continue
            if r.token.text in gen_kwargs["stop_sequences"]:
                break
            collected_chunks.append(r.token.text)
            chunk_message = r.token.text
            collected_messages.append(chunk_message)
            try:
                report.append(r.token.text)
                if len(r.token.text) > 0:
                    result="".join(report).strip()
                    res_box.markdown(f'*{result}*')
                    
            except:
                st.write('Stream llm issue')
        SpeechSynthesis(result)
        return result
    except:
        st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')

# 4. Run query with payload
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    st.markdown(response.json())
    return response.json()
    
def get_output(prompt):
    return query({"inputs": prompt})

# 5. Auto name generated output files from time and content
def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255]  # 255 is linux max, 260 is windows max
    #safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# 6. Speech transcription via OpenAI service
def transcribe_audio(openai_key, file_path, model):
    openai.api_key = openai_key
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        st.write('STT transcript ' + OPENAI_API_URL)
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
        transcript = response.json().get('text')
        filename = generate_filename(transcript, 'txt')
        response = chatResponse
        user_prompt = transcript
        create_file(filename, user_prompt, response, should_save)
        return transcript
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

# 7. Auto stop on silence audio control for recording WAV files
def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder(key='audio_recorder')
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

# 8. File creator that interprets type and creates output file for text, markdown and code
def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return
    base_filename, ext = os.path.splitext(filename)
    if ext in ['.txt', '.htm', '.md']:
        with open(f"{base_filename}.md", 'w') as file:
            try:
                content = prompt.strip() + '\r\n' + response
                file.write(content)
            except:
                st.write('.')

    #has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)
    #has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response))
        #if has_python_code:
        #    python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
        #    with open(f"{base_filename}-Code.py", 'w') as file:
        #        file.write(python_code)
        #    with open(f"{base_filename}.md", 'w') as file:
        #        content = prompt.strip() + '\r\n' + response
        #        file.write(content)
            
def truncate_document(document, length):
    return document[:length]
def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")

# 10. Read in and provide UI for past files
@st.cache_resource
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""


# 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
@st.cache_resource
def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'):    # gpt-4-0125-preview	gpt-3.5-turbo
#def chat_with_model(prompt, document_section='', model_choice='gpt-4-0125-preview'):    # gpt-4-0125-preview	gpt-3.5-turbo
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a coder, inventor, and writer of quotes on wisdom as a helpful expert in all fields of health, math, development and AI using python.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    start_time = time.time()
    report = []
    res_box = st.empty()
    collected_chunks = []
    collected_messages = []
    
    for chunk in openai.ChatCompletion.create(model=model_choice, messages=conversation, temperature=0.5, stream=True): 
        collected_chunks.append(chunk)  
        chunk_message = chunk['choices'][0]['delta']  
        collected_messages.append(chunk_message) 
        content=chunk["choices"][0].get("delta",{}).get("content")
        try:
            report.append(content)
            if len(content) > 0:
                result = "".join(report).strip()
                res_box.markdown(f'*{result}*') 
        except:
            st.write(' ')
    full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    return full_reply_content

# 11.1 45
@st.cache_resource
#def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'):    # gpt-4-0125-preview	gpt-3.5-turbo
def chat_with_model45(prompt, document_section='', model_choice='gpt-4-0125-preview'):    # gpt-4-0125-preview	gpt-3.5-turbo
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a coder, inventor, and writer of quotes on wisdom as a helpful expert in all fields of health, math, development and AI using python.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(document_section)>0:
        conversation.append({'role': 'assistant', 'content': document_section})
    start_time = time.time()
    report = []
    res_box = st.empty()
    collected_chunks = []
    collected_messages = []
    
    for chunk in openai.ChatCompletion.create(model=model_choice, messages=conversation, temperature=0.5, stream=True): 
        collected_chunks.append(chunk)  
        chunk_message = chunk['choices'][0]['delta']  
        collected_messages.append(chunk_message) 
        content=chunk["choices"][0].get("delta",{}).get("content")
        try:
            report.append(content)
            if len(content) > 0:
                result = "".join(report).strip()
                res_box.markdown(f'*{result}*') 
        except:
            st.write(' ')
    full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
    st.write("Elapsed time:")
    st.write(time.time() - start_time)
    return full_reply_content

@st.cache_resource
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):  # gpt-4-0125-preview	gpt-3.5-turbo
#def chat_with_file_contents(prompt, file_content, model_choice='gpt-4-0125-preview'):  # gpt-4-0125-preview	gpt-3.5-turbo
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    if len(file_content)>0:
        conversation.append({'role': 'assistant', 'content': file_content})
    response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
    return response['choices'][0]['message']['content']


def extract_mime_type(file):
    if isinstance(file, str):
        pattern = r"type='(.*?)'"
        match = re.search(pattern, file)
        if match:
            return match.group(1)
        else:
            raise ValueError(f"Unable to extract MIME type from {file}")
    elif isinstance(file, streamlit.UploadedFile):
        return file.type
    else:
        raise TypeError("Input should be a string or a streamlit.UploadedFile object")

def extract_file_extension(file):
    # get the file name directly from the UploadedFile object
    file_name = file.name
    pattern = r".*?\.(.*?)$"
    match = re.search(pattern, file_name)
    if match:
        return match.group(1)
    else:
        raise ValueError(f"Unable to extract file extension from {file_name}")

# Normalize input as text from PDF and other formats
@st.cache_resource
def pdf2txt(docs):
    text = ""
    for file in docs:
        file_extension = extract_file_extension(file)
        st.write(f"File type extension: {file_extension}")
        if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
            text += file.getvalue().decode('utf-8')
        elif file_extension.lower() == 'pdf':
            from PyPDF2 import PdfReader
            pdf = PdfReader(BytesIO(file.getvalue()))
            for page in range(len(pdf.pages)):
                text += pdf.pages[page].extract_text() # new PyPDF2 syntax
    return text

def txt2chunks(text):
    text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
    return text_splitter.split_text(text)

# Vector Store using FAISS
@st.cache_resource
def vector_store(text_chunks):
    embeddings = OpenAIEmbeddings(openai_api_key=key)
    return FAISS.from_texts(texts=text_chunks, embedding=embeddings)

# Memory and Retrieval chains
@st.cache_resource
def get_chain(vectorstore):
    llm = ChatOpenAI()
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)

def process_user_input(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']
    for i, message in enumerate(st.session_state.chat_history):
        template = user_template if i % 2 == 0 else bot_template
        st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        filename = generate_filename(user_question, 'txt')
        response = message.content
        user_prompt = user_question
        create_file(filename, user_prompt, response, should_save)       

def divide_prompt(prompt, max_length):
    words = prompt.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        if len(word) + current_length <= max_length:
            current_length += len(word) + 1 
            current_chunk.append(word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(word)
    chunks.append(' '.join(current_chunk))
    return chunks

    

API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
MODEL2 = "openai/whisper-small.en"
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
HF_KEY = st.secrets['HF_KEY']
headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "audio/wav"
}

def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL_IE, headers=headers, data=data)
    return response.json()

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# 15. Audio recorder to Wav file 
def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename

# 16. Speech transcription to file output
def transcribe_audio(filename):
    output = query(filename)
    return output


# Sample function to demonstrate a response, replace with your own logic
def StreamMedChatResponse(topic):
    st.write(f"Showing resources or questions related to: {topic}")

# Function to encode file to base64
def get_base64_encoded_file(file_path):
    with open(file_path, "rb") as file:
        return base64.b64encode(file.read()).decode()

# Function to create a download link
def get_audio_download_link(file_path):
    base64_file = get_base64_encoded_file(file_path)
    return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">⬇️ Download Audio</a>'

# Sidebar of past encounters
all_files = glob.glob("*.wav")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]  # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order

filekey = 'delall'
if st.sidebar.button("🗑 Delete All Audio", key=filekey):
    for file in all_files:
        os.remove(file)
    st.experimental_rerun()

for file in all_files:
    col1, col2 = st.sidebar.columns([6, 1])  # adjust the ratio as needed
    with col1:
        st.markdown(file)
        if st.button("🎵", key="play_" + file):  # play emoji button
            audio_file = open(file, 'rb')
            audio_bytes = audio_file.read()
            st.audio(audio_bytes, format='audio/wav')
            #st.markdown(get_audio_download_link(file), unsafe_allow_html=True)
            #st.text_input(label="", value=file)
    with col2:
        if st.button("🗑", key="delete_" + file):
            os.remove(file)
            st.experimental_rerun()



GiveFeedback=False
if GiveFeedback:
    with st.expander("Give your feedback 👍", expanded=False):
        feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote"))
        if feedback == "👍 Upvote":
            st.write("You upvoted 👍. Thank you for your feedback!")
        else:
            st.write("You downvoted 👎. Thank you for your feedback!")
        load_dotenv()
        st.write(css, unsafe_allow_html=True)
        st.header("Chat with documents :books:")
        user_question = st.text_input("Ask a question about your documents:")
        if user_question:
            process_user_input(user_question)
        with st.sidebar:
            st.subheader("Your documents")
            docs = st.file_uploader("import documents", accept_multiple_files=True)
            with st.spinner("Processing"):
                raw = pdf2txt(docs)
                if len(raw) > 0:
                    length = str(len(raw))
                    text_chunks = txt2chunks(raw)
                    vectorstore = vector_store(text_chunks)
                    st.session_state.conversation = get_chain(vectorstore)
                    st.markdown('# AI Search Index of Length:' + length + ' Created.')  # add timing
                    filename = generate_filename(raw, 'txt')
                    create_file(filename, raw, '', should_save)

try:
    query_params = st.query_params
    query = (query_params.get('q') or query_params.get('query') or [''])
    if query: 
        result = search_arxiv(query)
        result2 = search_glossary(result) 
except:
    st.markdown(' ')

if 'action' in st.query_params:
    action = st.query_params()['action'][0]  # Get the first (or only) 'action' parameter
    if action == 'show_message':
        st.success("Showing a message because 'action=show_message' was found in the URL.")
    elif action == 'clear':
        clear_query_params()
        st.experimental_rerun()

# Handling repeated keys
#if 'multi' in st.query_params:
#    multi_values = get_all_query_params('multi')
#    st.write("Values for 'multi':", multi_values)

# Manual entry for demonstration
#st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2")

if 'query' in st.query_params:
    query = st.query_params['query'][0]  # Get the query parameter
    # Display content or image based on the query
    display_content_or_image(query)

# Add a clear query parameters button for convenience
#if st.button("Clear Query Parameters", key='ClearQueryParams'):
    # This will clear the browser URL's query parameters
#    st.experimental_set_query_params
#    st.experimental_rerun()


st.markdown("### 🎲🗺️ Arxiv Paper Search QA RAG MAS using Streamlit and Gradio API")

filename = save_and_play_audio(audio_recorder)
if filename is not None:
    transcription = transcribe_audio(filename)
    try:
        transcript = transcription['text']
        st.write(transcript)

    except:
        transcript=''
        st.write(transcript)

    st.write('Reasoning with your inputs..')
    response = chat_with_model(transcript)
    st.write('Response:')
    st.write(response)
    filename = generate_filename(response, "txt")
    create_file(filename, transcript, response, should_save)
    
    # Whisper to Llama:
    response = StreamLLMChatResponse(transcript)
    filename_txt = generate_filename(transcript, "md")
    create_file(filename_txt, transcript, response, should_save)
    filename_wav = filename_txt.replace('.txt', '.wav')
    import shutil
    try: 
        if os.path.exists(filename):
            shutil.copyfile(filename, filename_wav)
    except:
        st.write('.')
    if os.path.exists(filename):
        os.remove(filename)




prompt = '''
What is MoE?
What are Multi Agent Systems?
What is Self Rewarding AI?
What is Semantic and Episodic memory?
What is AutoGen?
What is ChatDev?
What is Omniverse?
What is Lumiere?
What is SORA?  
'''


# Search History to ArXiv
session_state = {}
if "search_queries" not in session_state:
    session_state["search_queries"] = []
example_input = st.text_input("Search", value=session_state["search_queries"][-1] if session_state["search_queries"] else "")
if example_input:
    session_state["search_queries"].append(example_input)

    # Search AI
    query=example_input
    if query: 
        result = search_arxiv(query)
        #search_glossary(query)
        search_glossary(result)
    st.markdown(' ')
                             
st.write("Search history:")
for example_input in session_state["search_queries"]:
    st.write(example_input)

if st.button("Run Prompt", help="Click to run."):
    try:
        response=StreamLLMChatResponse(example_input)
        create_file(filename, example_input, response, should_save)
    except:
        st.write('model is asleep. Starting now on A10 GPU.  Please wait one minute then retry.  KEDA triggered.')
        
openai.api_key = os.getenv('OPENAI_API_KEY')
if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY']
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)

#model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))        
#user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)


collength, colupload = st.columns([2,3])  # adjust the ratio as needed
with collength:
    max_length = st.slider(key='maxlength', label="File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
    uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
    file_content = read_file_content(uploaded_file, max_length)
    document_sections.extend(divide_document(file_content, max_length))

    
if len(document_sections) > 0:
    if st.button("👁️ View Upload"):
        st.markdown("**Sections of the uploaded file:**")
        for i, section in enumerate(list(document_sections)):
            st.markdown(f"**Section {i+1}**\n{section}")
            
    st.markdown("**Chat with the model:**")
    for i, section in enumerate(list(document_sections)):
        if i in document_responses:
            st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
        else:
            if st.button(f"Chat about Section {i+1}"):
                st.write('Reasoning with your inputs...')
                st.write('Response:')
                st.write(response)
                document_responses[i] = response
                filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                create_file(filename, user_prompt, response, should_save)
                st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
                
#if st.button('💬 Chat'):
#    st.write('Reasoning with your inputs...')
#    user_prompt_sections = divide_prompt(user_prompt, max_length)
#    full_response = ''
#    for prompt_section in user_prompt_sections:
#        response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
#        full_response += response + '\n'  # Combine the responses
#    response = full_response
#    st.write('Response:')
#    st.write(response)
#    filename = generate_filename(user_prompt, choice)
#    create_file(filename, user_prompt, response, should_save)

display_glossary_grid(roleplaying_glossary)  # Word Glossary Jump Grid
display_videos_and_links()   # Video Jump Grid
display_images_and_wikipedia_summaries()   # Image Jump Grid
#display_buttons_with_scores()  # Feedback Jump Grid