File size: 4,051 Bytes
6c9dfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
title: TransformersDiffusersNDatasets
emoji: 🏒
colorFrom: gray
colorTo: green
sdk: streamlit
sdk_version: 1.43.0
app_file: app.py
pinned: false
license: mit
short_description: 🌳 AI Knowledge Tree Builder πŸ“ˆπŸŒΏ
---

# 🌳 AI Knowledge Tree Builder πŸ“ˆπŸŒΏ

## 🌟 Overview
The **AI Knowledge Tree Builder** is a Streamlit app designed to cultivate and visualize hierarchical knowledge structures. It supports growing trees with new nodes, linking them to real-time social networks or search engines, and building AI models from CSV uploadsβ€”all visualized with Mermaid graphs and tied to cutting-edge research.

## πŸš€ Features
- 🌱 **Tree Growth**: Add nodes (e.g., "Feature Engineering" under "ML Engineering") to extend trees dynamically.
  - **How-to**: Enter a new node name and parent node, click "Grow Tree" β†’ Tree updates instantly!
- πŸ–ΌοΈ **Mermaid Visualizations**: Render trees as clickable graphs with sanitized text (no invalid characters like parentheses).
  - **Tip**: Click nodes to explore via your chosen search agent (e.g., X for current events).
- πŸ“± **Node Linking**: Connect nodes to high-resolution social networks (default: X) or choose from six agents: ArXiv, Google, YouTube, Bing, TruthSocial, X.
  - **Tweet**: "Stay current with AI Knowledge Tree Builder! 🌳 Nodes link to X by default for real-time insights. #KnowledgeGraph #AI"
- 🌳 **Base Trees**: Start with "Health" or "ML Engineering" (default) as foundational knowledge structures.
- 🌱 **Project Seeds**: Choose your project type to seed the tree:
  - **Code Project**: Root nodes: `app.py`, `requirements.txt`, `README.md`.
  - **Papers Project**: Root nodes: `markdown`, `mermaid`, `huggingface.co`.
  - **AI Project**: Three variations:
    1. **Streamlit, Torch, Transformers**: Upload a CSV, train a minimal ML model, and demo it.
       - **How-to**: Upload CSV β†’ Select features & target β†’ Train β†’ Download `app.py`, `requirements.txt`, `README.md`.
       - **Tweet**: "Build an AI model in minutes! 🌳 Upload a CSV, train with Torch, and deploy with Streamlit. #MachineLearning #AI"
    2. **DistillKit, MergeKit, Spectrum**: Seeds for distillation model building.
    3. **Transformers, Diffusers, Datasets**: Seeds for advanced AI projects.
- πŸ“š **Research Links**: Root node ties to [Hugging Face Profile](https://huggingface.co/awacke1), [TeachingCV](https://huggingface.co/spaces/awacke1/TeachingCV), [DeepResearchEvaluator](https://huggingface.co/spaces/awacke1/DeepResearchEvaluator).
- πŸ“ **Export**: Save trees as Markdown with outlines and Mermaid code.
  - **Tweet**: "Export your knowledge tree as Markdown! 🌳 Outline + Mermaid graph ready for Git or docs. #AI #Visualization"

## πŸ“‹ Structure
- **Base Trees**:
  - **ML Engineering (Default)** 🌐
    - Data Preparation β†’ Load Data πŸ“Š, Preprocess Data πŸ› οΈ
    - Model Building β†’ Train Model πŸ€–, Evaluate Model πŸ“ˆ
    - Deployment β†’ Deploy Model πŸš€
  - **Health** 🌿
    - Physical Health β†’ Exercise πŸ‹οΈ, Nutrition 🍎
    - Mental Health β†’ Meditation 🧘, Therapy πŸ›‹οΈ
- **Project Seeds**:
  - Code Project: `app.py` 🐍 β†’ `requirements.txt` πŸ“¦ β†’ `README.md` πŸ“„
  - Papers Project: `markdown` πŸ“ β†’ `mermaid` πŸ–ΌοΈ β†’ `huggingface.co` πŸ€—
  - AI Project: 
    - Streamlit 🌐 β†’ Torch πŸ”₯ β†’ Transformers πŸ€–
    - DistillKit πŸ§ͺ β†’ MergeKit πŸ”„ β†’ Spectrum πŸ“Š
    - Transformers πŸ€– β†’ Diffusers 🎨 β†’ Datasets πŸ“Š

## πŸŽ‰ Announcement Tweet
πŸš€ Meet the **AI Knowledge Tree Builder**! 🌳 Grow trees 🌱, link nodes to X πŸ“± for current events, build AI models from CSVs πŸ€–, and visualize with Mermaid πŸ–ΌοΈ. Start with ML Engineering or Health, export to Markdown, and dive into research! Try it: [link] #AI #MachineLearning #KnowledgeGraph

## πŸ› οΈ How to Run
1. Clone the repo: `git clone [repo-link]`
2. Install dependencies: `pip install -r requirements.txt`
3. Launch the app: `streamlit run app.py`
4. Select a project type, grow your tree, and explore!