Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import streamlit as st
|
5 |
+
import streamlit.components.v1 as components
|
6 |
+
from urllib.parse import quote
|
7 |
+
import pandas as pd
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.optim as optim
|
11 |
+
from torch.utils.data import DataLoader, TensorDataset
|
12 |
+
import base64
|
13 |
+
import glob
|
14 |
+
import time
|
15 |
+
|
16 |
+
# Page Configuration
|
17 |
+
st.set_page_config(
|
18 |
+
page_title="AI Knowledge Tree Builder 📈🌿",
|
19 |
+
page_icon="🌳✨",
|
20 |
+
layout="wide",
|
21 |
+
initial_sidebar_state="auto",
|
22 |
+
)
|
23 |
+
|
24 |
+
# Predefined Knowledge Trees
|
25 |
+
trees = {
|
26 |
+
"ML Engineering": """
|
27 |
+
0. ML Engineering 🌐
|
28 |
+
1. Data Preparation
|
29 |
+
- Load Data 📊
|
30 |
+
- Preprocess Data 🛠️
|
31 |
+
2. Model Building
|
32 |
+
- Train Model 🤖
|
33 |
+
- Evaluate Model 📈
|
34 |
+
3. Deployment
|
35 |
+
- Deploy Model 🚀
|
36 |
+
""",
|
37 |
+
"Health": """
|
38 |
+
0. Health and Wellness 🌿
|
39 |
+
1. Physical Health
|
40 |
+
- Exercise 🏋️
|
41 |
+
- Nutrition 🍎
|
42 |
+
2. Mental Health
|
43 |
+
- Meditation 🧘
|
44 |
+
- Therapy 🛋️
|
45 |
+
""",
|
46 |
+
}
|
47 |
+
|
48 |
+
# Project Seeds
|
49 |
+
project_seeds = {
|
50 |
+
"Code Project": """
|
51 |
+
0. Code Project 📂
|
52 |
+
1. app.py 🐍
|
53 |
+
2. requirements.txt 📦
|
54 |
+
3. README.md 📄
|
55 |
+
""",
|
56 |
+
"Papers Project": """
|
57 |
+
0. Papers Project 📚
|
58 |
+
1. markdown 📝
|
59 |
+
2. mermaid 🖼️
|
60 |
+
3. huggingface.co 🤗
|
61 |
+
""",
|
62 |
+
"AI Project": """
|
63 |
+
0. AI Project 🤖
|
64 |
+
1. Streamlit Torch Transformers
|
65 |
+
- Streamlit 🌐
|
66 |
+
- Torch 🔥
|
67 |
+
- Transformers 🤖
|
68 |
+
2. DistillKit MergeKit Spectrum
|
69 |
+
- DistillKit 🧪
|
70 |
+
- MergeKit 🔄
|
71 |
+
- Spectrum 📊
|
72 |
+
3. Transformers Diffusers Datasets
|
73 |
+
- Transformers 🤖
|
74 |
+
- Diffusers 🎨
|
75 |
+
- Datasets 📊
|
76 |
+
""",
|
77 |
+
}
|
78 |
+
|
79 |
+
# Utility Functions
|
80 |
+
def sanitize_label(label):
|
81 |
+
"""Remove invalid characters for Mermaid labels."""
|
82 |
+
return re.sub(r'[^\w\s-]', '', label).replace(' ', '_')
|
83 |
+
|
84 |
+
def sanitize_filename(label):
|
85 |
+
"""Make a valid filename from a label."""
|
86 |
+
return re.sub(r'[^\w\s-]', '', label).replace(' ', '_')
|
87 |
+
|
88 |
+
def parse_outline_to_mermaid(outline_text, search_agent):
|
89 |
+
"""Convert tree outline to Mermaid syntax with clickable nodes."""
|
90 |
+
lines = outline_text.strip().split('\n')
|
91 |
+
nodes, edges, clicks, stack = [], [], [], []
|
92 |
+
for line in lines:
|
93 |
+
indent = len(line) - len(line.lstrip())
|
94 |
+
level = indent // 4
|
95 |
+
label = re.sub(r'^[#*\->\d\.\s]+', '', line.strip())
|
96 |
+
if label:
|
97 |
+
node_id = f"N{len(nodes)}"
|
98 |
+
sanitized_label = sanitize_label(label)
|
99 |
+
nodes.append(f'{node_id}["{label}"]')
|
100 |
+
search_url = search_urls[search_agent](label)
|
101 |
+
clicks.append(f'click {node_id} "{search_url}" _blank')
|
102 |
+
if stack:
|
103 |
+
parent_level = stack[-1][0]
|
104 |
+
if level > parent_level:
|
105 |
+
edges.append(f"{stack[-1][1]} --> {node_id}")
|
106 |
+
stack.append((level, node_id))
|
107 |
+
else:
|
108 |
+
while stack and stack[-1][0] >= level:
|
109 |
+
stack.pop()
|
110 |
+
if stack:
|
111 |
+
edges.append(f"{stack[-1][1]} --> {node_id}")
|
112 |
+
stack.append((level, node_id))
|
113 |
+
else:
|
114 |
+
stack.append((level, node_id))
|
115 |
+
return "%%{init: {'themeVariables': {'fontSize': '18px'}}}%%\nflowchart LR\n" + "\n".join(nodes + edges + clicks)
|
116 |
+
|
117 |
+
def generate_mermaid_html(mermaid_code):
|
118 |
+
"""Generate HTML to display Mermaid diagram."""
|
119 |
+
return f"""
|
120 |
+
<html><head><script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
|
121 |
+
<style>.centered-mermaid{{display:flex;justify-content:center;margin:20px auto;}}</style></head>
|
122 |
+
<body><div class="mermaid centered-mermaid">{mermaid_code}</div>
|
123 |
+
<script>mermaid.initialize({{startOnLoad:true}});</script></body></html>
|
124 |
+
"""
|
125 |
+
|
126 |
+
def grow_tree(base_tree, new_node_name, parent_node):
|
127 |
+
"""Add a new node to the tree under a specified parent."""
|
128 |
+
lines = base_tree.strip().split('\n')
|
129 |
+
new_lines = []
|
130 |
+
added = False
|
131 |
+
for line in lines:
|
132 |
+
new_lines.append(line)
|
133 |
+
if parent_node in line and not added:
|
134 |
+
indent = len(line) - len(line.lstrip())
|
135 |
+
new_lines.append(f"{' ' * (indent + 4)}- {new_node_name} 🌱")
|
136 |
+
added = True
|
137 |
+
return "\n".join(new_lines)
|
138 |
+
|
139 |
+
def get_download_link(file_path, mime_type="text/plain"):
|
140 |
+
"""Generate a download link for a file."""
|
141 |
+
with open(file_path, 'rb') as f:
|
142 |
+
data = f.read()
|
143 |
+
b64 = base64.b64encode(data).decode()
|
144 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{file_path}">Download {file_path}</a>'
|
145 |
+
|
146 |
+
def save_tree_to_file(tree_text, parent_node, new_node):
|
147 |
+
"""Save tree to a markdown file with name based on nodes."""
|
148 |
+
root_node = tree_text.strip().split('\n')[0].split('.')[1].strip() if tree_text.strip() else "Knowledge_Tree"
|
149 |
+
filename = f"{sanitize_filename(root_node)}_{sanitize_filename(parent_node)}_{sanitize_filename(new_node)}_{int(time.time())}.md"
|
150 |
+
|
151 |
+
mermaid_code = parse_outline_to_mermaid(tree_text, "🔮Google") # Default search engine for saved trees
|
152 |
+
export_md = f"# Knowledge Tree: {root_node}\n\n## Outline\n{tree_text}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```"
|
153 |
+
|
154 |
+
with open(filename, "w") as f:
|
155 |
+
f.write(export_md)
|
156 |
+
return filename
|
157 |
+
|
158 |
+
def load_trees_from_files():
|
159 |
+
"""Load all saved tree markdown files."""
|
160 |
+
tree_files = glob.glob("*.md")
|
161 |
+
trees_dict = {}
|
162 |
+
|
163 |
+
for file in tree_files:
|
164 |
+
if file != "README.md" and file != "knowledge_tree.md": # Skip project README and temp export
|
165 |
+
try:
|
166 |
+
with open(file, 'r') as f:
|
167 |
+
content = f.read()
|
168 |
+
# Extract the tree name from the first line
|
169 |
+
match = re.search(r'# Knowledge Tree: (.*)', content)
|
170 |
+
if match:
|
171 |
+
tree_name = match.group(1)
|
172 |
+
else:
|
173 |
+
tree_name = os.path.splitext(file)[0]
|
174 |
+
|
175 |
+
# Extract the outline section
|
176 |
+
outline_match = re.search(r'## Outline\n(.*?)(?=\n## |$)', content, re.DOTALL)
|
177 |
+
if outline_match:
|
178 |
+
tree_outline = outline_match.group(1).strip()
|
179 |
+
trees_dict[f"{tree_name} ({file})"] = tree_outline
|
180 |
+
except Exception as e:
|
181 |
+
print(f"Error loading {file}: {e}")
|
182 |
+
|
183 |
+
return trees_dict
|
184 |
+
|
185 |
+
# Search Agents (Highest resolution social network default: X)
|
186 |
+
search_urls = {
|
187 |
+
"📚📖ArXiv": lambda k: f"/?q={quote(k)}",
|
188 |
+
"🔮Google": lambda k: f"https://www.google.com/search?q={quote(k)}",
|
189 |
+
"📺Youtube": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
|
190 |
+
"🔭Bing": lambda k: f"https://www.bing.com/search?q={quote(k)}",
|
191 |
+
"💡Truth": lambda k: f"https://truthsocial.com/search?q={quote(k)}",
|
192 |
+
"📱X": lambda k: f"https://twitter.com/search?q={quote(k)}",
|
193 |
+
}
|
194 |
+
|
195 |
+
# Main App
|
196 |
+
st.title("🌳 AI Knowledge Tree Builder 🌱")
|
197 |
+
|
198 |
+
# Sidebar with saved trees
|
199 |
+
st.sidebar.title("Saved Trees")
|
200 |
+
saved_trees = load_trees_from_files()
|
201 |
+
selected_saved_tree = st.sidebar.selectbox("Select a saved tree", ["None"] + list(saved_trees.keys()))
|
202 |
+
|
203 |
+
# Select Project Type
|
204 |
+
project_type = st.selectbox("Select Project Type", ["Code Project", "Papers Project", "AI Project"])
|
205 |
+
|
206 |
+
# Initialize or load tree
|
207 |
+
if 'current_tree' not in st.session_state:
|
208 |
+
if selected_saved_tree != "None" and selected_saved_tree in saved_trees:
|
209 |
+
st.session_state['current_tree'] = saved_trees[selected_saved_tree]
|
210 |
+
else:
|
211 |
+
st.session_state['current_tree'] = trees.get("ML Engineering", project_seeds[project_type])
|
212 |
+
elif selected_saved_tree != "None" and selected_saved_tree in saved_trees:
|
213 |
+
st.session_state['current_tree'] = saved_trees[selected_saved_tree]
|
214 |
+
|
215 |
+
# Select Search Agent for Node Links
|
216 |
+
search_agent = st.selectbox("Select Search Agent for Node Links", list(search_urls.keys()), index=5) # Default to X
|
217 |
+
|
218 |
+
# Tree Growth
|
219 |
+
new_node = st.text_input("Add New Node")
|
220 |
+
parent_node = st.text_input("Parent Node")
|
221 |
+
if st.button("Grow Tree 🌱") and new_node and parent_node:
|
222 |
+
st.session_state['current_tree'] = grow_tree(st.session_state['current_tree'], new_node, parent_node)
|
223 |
+
|
224 |
+
# Save to a new file with the node names
|
225 |
+
saved_file = save_tree_to_file(st.session_state['current_tree'], parent_node, new_node)
|
226 |
+
st.success(f"Added '{new_node}' under '{parent_node}' and saved to {saved_file}!")
|
227 |
+
|
228 |
+
# Also update the temporary current_tree.md for compatibility
|
229 |
+
with open("current_tree.md", "w") as f:
|
230 |
+
f.write(st.session_state['current_tree'])
|
231 |
+
|
232 |
+
# Display Mermaid Diagram
|
233 |
+
st.markdown("### Knowledge Tree Visualization")
|
234 |
+
mermaid_code = parse_outline_to_mermaid(st.session_state['current_tree'], search_agent)
|
235 |
+
components.html(generate_mermaid_html(mermaid_code), height=600)
|
236 |
+
|
237 |
+
# Export Tree
|
238 |
+
if st.button("Export Tree as Markdown"):
|
239 |
+
export_md = f"# Knowledge Tree\n\n## Outline\n{st.session_state['current_tree']}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```"
|
240 |
+
with open("knowledge_tree.md", "w") as f:
|
241 |
+
f.write(export_md)
|
242 |
+
st.markdown(get_download_link("knowledge_tree.md", "text/markdown"), unsafe_allow_html=True)
|
243 |
+
|
244 |
+
# AI Project: Minimal ML Model Building
|
245 |
+
if project_type == "AI Project":
|
246 |
+
st.subheader("Build Minimal ML Model from CSV")
|
247 |
+
uploaded_file = st.file_uploader("Upload CSV", type="csv")
|
248 |
+
if uploaded_file:
|
249 |
+
df = pd.read_csv(uploaded_file)
|
250 |
+
st.write("Columns:", df.columns.tolist())
|
251 |
+
feature_cols = st.multiselect("Select feature columns", df.columns)
|
252 |
+
target_col = st.selectbox("Select target column", df.columns)
|
253 |
+
if st.button("Train Model"):
|
254 |
+
X = df[feature_cols].values
|
255 |
+
y = df[target_col].values
|
256 |
+
X_tensor = torch.tensor(X, dtype=torch.float32)
|
257 |
+
y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)
|
258 |
+
dataset = TensorDataset(X_tensor, y_tensor)
|
259 |
+
loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
260 |
+
model = nn.Linear(X.shape[1], 1)
|
261 |
+
criterion = nn.MSELoss()
|
262 |
+
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
263 |
+
for epoch in range(10):
|
264 |
+
for batch_X, batch_y in loader:
|
265 |
+
optimizer.zero_grad()
|
266 |
+
outputs = model(batch_X)
|
267 |
+
loss = criterion(outputs, batch_y)
|
268 |
+
loss.backward()
|
269 |
+
optimizer.step()
|
270 |
+
torch.save(model.state_dict(), "model.pth")
|
271 |
+
app_code = f"""
|
272 |
+
import streamlit as st
|
273 |
+
import torch
|
274 |
+
import torch.nn as nn
|
275 |
+
|
276 |
+
model = nn.Linear({len(feature_cols)}, 1)
|
277 |
+
model.load_state_dict(torch.load("model.pth"))
|
278 |
+
model.eval()
|
279 |
+
|
280 |
+
st.title("ML Model Demo")
|
281 |
+
inputs = []
|
282 |
+
for col in {feature_cols}:
|
283 |
+
inputs.append(st.number_input(col))
|
284 |
+
if st.button("Predict"):
|
285 |
+
input_tensor = torch.tensor([inputs], dtype=torch.float32)
|
286 |
+
prediction = model(input_tensor).item()
|
287 |
+
st.write(f"Predicted {target_col}: {{prediction}}")
|
288 |
+
"""
|
289 |
+
with open("app.py", "w") as f:
|
290 |
+
f.write(app_code)
|
291 |
+
reqs = "streamlit\ntorch\npandas\n"
|
292 |
+
with open("requirements.txt", "w") as f:
|
293 |
+
f.write(reqs)
|
294 |
+
readme = """
|
295 |
+
# ML Model Demo
|
296 |
+
|
297 |
+
## How to run
|
298 |
+
1. Install requirements: `pip install -r requirements.txt`
|
299 |
+
2. Run the app: `streamlit run app.py`
|
300 |
+
3. Input feature values and click "Predict".
|
301 |
+
"""
|
302 |
+
with open("README.md", "w") as f:
|
303 |
+
f.write(readme)
|
304 |
+
st.markdown(get_download_link("model.pth", "application/octet-stream"), unsafe_allow_html=True)
|
305 |
+
st.markdown(get_download_link("app.py", "text/plain"), unsafe_allow_html=True)
|
306 |
+
st.markdown(get_download_link("requirements.txt", "text/plain"), unsafe_allow_html=True)
|
307 |
+
st.markdown(get_download_link("README.md", "text/markdown"), unsafe_allow_html=True)
|