File size: 5,229 Bytes
0e1662c
1ba601f
ac0345f
1ba601f
957aadb
 
0e1662c
1ba601f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1655c
1ba601f
 
 
 
 
20b8116
 
1ba601f
 
 
 
6910cc8
957aadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ba601f
 
 
6910cc8
957aadb
 
 
 
 
 
 
 
 
 
1ba601f
 
6907b9a
1ba601f
 
814d3fc
1ba601f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import streamlit as st
import streamlit.components.v1 as components
import geopandas as gpd
import matplotlib.pyplot as plt
import plotly.express as px
import json

# Function to generate HTML with textarea for speech synthesis
def generate_speech_textarea(text_to_speak):
    documentHTML5 = '''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {{
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }}
        </script>
    </head>
    <body>
        <h1>πŸ”Š Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80" readonly>'''
    documentHTML5 = documentHTML5 + text_to_speak
    documentHTML5 = documentHTML5 + '''
        </textarea>
        <br>
        <button onclick="readAloud()">πŸ”Š Read Aloud</button>
    </body>
    </html>
    '''
    components.html(documentHTML5, width=1280, height=500)

# Function to display the state outline
def plot_state_outline(state_code):
    # Read U.S. geometries file
    gdf = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
    # Filter data for the given state
    gdf_state = gdf[gdf['iso_a3'] == 'USA']
    #gdf_state = gdf[gdf['iso_a3'] == 'state_code']
    # Plot the geometry
    ax = gdf_state.boundary.plot()
    plt.title(f"{state_code} State Outline")
    st.pyplot(plt)

# Load the GeoJSON file
geojson_path = 'gz_2010_us_040_00_500k.json'
with open(geojson_path, 'r') as file:
    us_states_geojson = json.load(file)

# Mapping of state codes to state names
state_names = {
    'MN': 'Minnesota',
    'CA': 'California',
    'WA': 'Washington',
    'FL': 'Florida',
    'TX': 'Texas',
    'NY': 'New York',
    'NV': 'Nevada'
}

# Function to display the state outline
def plot_state_outline(state_code):
    state_name = state_names.get(state_code, 'Unknown')
    fig = px.choropleth(locations=[state_name], geojson=us_states_geojson,
                        featureidkey="properties.NAME",
                        projection="mercator")
    fig.update_geos(fitbounds="locations", visible=False)
    fig.update_layout(title=f"{state_name} State Outline")
    st.plotly_chart(fig)

# States list and associated icons
states = ['MN', 'CA', 'WA', 'FL', 'TX', 'NY', 'NV']
icons = ['πŸ¦†', '🌴', '🍎', '🌞', '🀠', 'πŸ—½', '🎰']

# Display maps for each state
for state, icon in zip(states, icons):
    st.write(f"{icon} {state}")
    plot_state_outline(state)

    
# States list and associated icons
# states = ['MN', 'CA', 'WA', 'FL', 'TX', 'NY', 'NV']
# icons = ['πŸ¦†', '🌴', '🍎', '🌞', '🀠', 'πŸ—½', '🎰']

# Main code
st.title('U.S. States Trivia πŸ—ΊοΈ')

for i, (state, icon) in enumerate(zip(states, icons)):
    st.markdown(f"{i + 1}. {state} {icon}")

    # Expanders for each state to outline fascinating facts
    with st.expander(f"See Fascinating Facts about {state}"):
        text_to_speak = ""
        
        if state == 'MN':
            text_to_speak = "πŸ¦† **Minnesota** \n🏞️ Known as the 'Land of 10,000 Lakes' \n🎣 Famous for its fishing \nπŸ›Ά Boundary Waters offers incredible canoeing \nπŸŽ“ Home to prestigious colleges \n❄️ Cold winters but lovely summers."
        elif state == 'CA':
            text_to_speak = "🌴 **California** \nπŸŒ‰ Home to the Golden Gate Bridge \n🎬 Center of the American entertainment industry \nπŸ‡ Famous for Napa Valley's wine \n🌲 Home to Redwood National Park \nπŸ„β€β™€οΈ Excellent beaches and surf spots."
        elif state == 'WA':
            text_to_speak = "🍎 **Washington** \nβ˜• Known for its coffee culture \nπŸ—» Home to Mount Rainier \n🍏 Leading apple-producing state \n🐟 Rich in seafood, especially salmon \n🌧️ Known for its rainy weather."
        elif state == 'FL':
            text_to_speak = "🌞 **Florida** \n🏝️ Famous for its beaches \n🎒 Home to various amusement parks like Disney World \nπŸš€ Space launches from Cape Canaveral \n🐊 Known for the Everglades and alligators \n🍊 Major orange producer."
        elif state == 'TX':
            text_to_speak = "🀠 **Texas** \nπŸ›’οΈ Known for its oil and gas industry \nπŸ– Famous for its barbecue \n🎸 Rich musical heritage \nπŸ„ Home to many cattle ranches \n🌡 Includes part of the Chihuahuan Desert."
        elif state == 'NY':
            text_to_speak = "πŸ—½ **New York** \nπŸ™οΈ Home to New York City, the largest city in the U.S. \n🍎 Known as the Big Apple \n🎭 Major hub for arts and culture \n🏞️ Adirondack Mountains offer outdoor adventures \nπŸ• Famous for its style of pizza."
        elif state == 'NV':
            text_to_speak = "🎰 **Nevada** \nπŸŒ† Known for Las Vegas and its casinos \n🏜️ Includes part of the Mojave Desert \nπŸŽͺ Entertainment is a major industry \nπŸ’Ž Known for the Hoover Dam \nπŸ‘½ Area 51 is located here."
            
        st.markdown(text_to_speak)
        plot_state_outline(state)
        
        if st.button(f"πŸ”Š Read {state}'s Facts Aloud"):
            generate_speech_textarea(text_to_speak)