Update app.py
Browse files
app.py
CHANGED
@@ -35,37 +35,13 @@ def generate_speech_textarea(text_to_speak):
|
|
35 |
|
36 |
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# Filter data for the given state
|
44 |
-
gdf_state = gdf[gdf['iso_a3'] == 'USA']
|
45 |
-
#gdf_state = gdf[gdf['iso_a3'] == 'state_code']
|
46 |
-
# Plot the geometry
|
47 |
-
ax = gdf_state.boundary.plot()
|
48 |
-
plt.title(f"{state_code} State Outline")
|
49 |
-
st.pyplot(plt)
|
50 |
-
|
51 |
-
# Load the GeoJSON file
|
52 |
-
geojson_path = 'gz_2010_us_040_00_500k.json'
|
53 |
-
with open(geojson_path, 'r') as file:
|
54 |
-
us_states_geojson = json.load(file)
|
55 |
-
|
56 |
-
# Mapping of state codes to state names
|
57 |
-
state_names = {
|
58 |
-
'MN': 'Minnesota',
|
59 |
-
'CA': 'California',
|
60 |
-
'WA': 'Washington',
|
61 |
-
'FL': 'Florida',
|
62 |
-
'TX': 'Texas',
|
63 |
-
'NY': 'New York',
|
64 |
-
'NV': 'Nevada'
|
65 |
-
}
|
66 |
|
67 |
-
|
68 |
-
def plot_state_outline(state_code):
|
69 |
state_name = state_names.get(state_code, 'Unknown')
|
70 |
fig = px.choropleth(locations=[state_name], geojson=us_states_geojson,
|
71 |
featureidkey="properties.NAME",
|
@@ -74,10 +50,23 @@ def plot_state_outline(state_code):
|
|
74 |
fig.update_layout(title=f"{state_name} State Outline")
|
75 |
st.plotly_chart(fig)
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
states = ['MN', 'CA', 'WA', 'FL', 'TX', 'NY', 'NV']
|
79 |
icons = ['🦆', '🌴', '🍎', '🌞', '🤠', '🗽', '🎰']
|
80 |
|
|
|
|
|
|
|
|
|
|
|
81 |
# Display maps for each state
|
82 |
for state, icon in zip(states, icons):
|
83 |
st.write(f"{icon} {state}")
|
|
|
35 |
|
36 |
|
37 |
|
38 |
+
import geopandas as gpd
|
39 |
+
import matplotlib.pyplot as plt
|
40 |
+
import streamlit as st
|
41 |
+
import json
|
42 |
+
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
def plot_state_outline(state_code, us_states_geojson, state_names):
|
|
|
45 |
state_name = state_names.get(state_code, 'Unknown')
|
46 |
fig = px.choropleth(locations=[state_name], geojson=us_states_geojson,
|
47 |
featureidkey="properties.NAME",
|
|
|
50 |
fig.update_layout(title=f"{state_name} State Outline")
|
51 |
st.plotly_chart(fig)
|
52 |
|
53 |
+
geojson_path = 'gz_2010_us_040_00_500k.json'
|
54 |
+
with open(geojson_path, 'r') as file:
|
55 |
+
us_states_geojson = json.load(file)
|
56 |
+
|
57 |
+
state_names = {
|
58 |
+
'MN': 'Minnesota', 'CA': 'California', 'WA': 'Washington',
|
59 |
+
'FL': 'Florida', 'TX': 'Texas', 'NY': 'New York', 'NV': 'Nevada'
|
60 |
+
}
|
61 |
+
|
62 |
states = ['MN', 'CA', 'WA', 'FL', 'TX', 'NY', 'NV']
|
63 |
icons = ['🦆', '🌴', '🍎', '🌞', '🤠', '🗽', '🎰']
|
64 |
|
65 |
+
for state, icon in zip(states, icons):
|
66 |
+
st.write(f"{icon} {state}")
|
67 |
+
plot_state_outline(state, us_states_geojson, state_names)
|
68 |
+
|
69 |
+
|
70 |
# Display maps for each state
|
71 |
for state, icon in zip(states, icons):
|
72 |
st.write(f"{icon} {state}")
|