File size: 9,583 Bytes
0e371d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
# coding: utf-8

import numpy as np
import math
import tensorflow.keras.backend as K
import tensorflow as tf


def xywh_to_x1y1x2y2(boxes):
    return tf.concat([boxes[..., :2] - boxes[..., 2:] * 0.5, boxes[..., :2] + boxes[..., 2:] * 0.5], axis=-1)


# x,y,w,h
def bbox_iou(boxes1, boxes2):
    boxes1_area = boxes1[..., 2] * boxes1[..., 3]  # w * h
    boxes2_area = boxes2[..., 2] * boxes2[..., 3]

    # (x, y, w, h) -> (x0, y0, x1, y1)
    boxes1 = xywh_to_x1y1x2y2(boxes1)
    boxes2 = xywh_to_x1y1x2y2(boxes2)

    # coordinates of intersection
    top_left = tf.maximum(boxes1[..., :2], boxes2[..., :2])
    bottom_right = tf.minimum(boxes1[..., 2:], boxes2[..., 2:])
    intersection_xy = tf.maximum(bottom_right - top_left, 0.0)

    intersection_area = intersection_xy[..., 0] * intersection_xy[..., 1]
    union_area = boxes1_area + boxes2_area - intersection_area

    return 1.0 * intersection_area / (union_area + tf.keras.backend.epsilon())


def bbox_giou(boxes1, boxes2):
    boxes1_area = boxes1[..., 2] * boxes1[..., 3]  # w*h
    boxes2_area = boxes2[..., 2] * boxes2[..., 3]

    # (x, y, w, h) -> (x0, y0, x1, y1)
    boxes1 = xywh_to_x1y1x2y2(boxes1)
    boxes2 = xywh_to_x1y1x2y2(boxes2)

    top_left = tf.maximum(boxes1[..., :2], boxes2[..., :2])
    bottom_right = tf.minimum(boxes1[..., 2:], boxes2[..., 2:])

    intersection_xy = tf.maximum(bottom_right - top_left, 0.0)
    intersection_area = intersection_xy[..., 0] * intersection_xy[..., 1]

    union_area = boxes1_area + boxes2_area - intersection_area

    iou = 1.0 * intersection_area / (union_area + tf.keras.backend.epsilon())

    enclose_top_left = tf.minimum(boxes1[..., :2], boxes2[..., :2])
    enclose_bottom_right = tf.maximum(boxes1[..., 2:], boxes2[..., 2:])

    enclose_xy = enclose_bottom_right - enclose_top_left
    enclose_area = enclose_xy[..., 0] * enclose_xy[..., 1]

    giou = iou - tf.math.divide_no_nan(enclose_area - union_area, enclose_area)

    return giou


def bbox_ciou(boxes1, boxes2):
    '''
    ciou = iou - p2/c2 - av
    :param boxes1: (8, 13, 13, 3, 4)   pred_xywh
    :param boxes2: (8, 13, 13, 3, 4)   label_xywh
    :return:
    '''
    boxes1_x0y0x1y1 = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5,
                                 boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1)
    boxes2_x0y0x1y1 = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5,
                                 boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1)
    boxes1_x0y0x1y1 = tf.concat([tf.minimum(boxes1_x0y0x1y1[..., :2], boxes1_x0y0x1y1[..., 2:]),
                                 tf.maximum(boxes1_x0y0x1y1[..., :2], boxes1_x0y0x1y1[..., 2:])], axis=-1)
    boxes2_x0y0x1y1 = tf.concat([tf.minimum(boxes2_x0y0x1y1[..., :2], boxes2_x0y0x1y1[..., 2:]),
                                 tf.maximum(boxes2_x0y0x1y1[..., :2], boxes2_x0y0x1y1[..., 2:])], axis=-1)

    # area
    boxes1_area = (boxes1_x0y0x1y1[..., 2] - boxes1_x0y0x1y1[..., 0]) * (
                boxes1_x0y0x1y1[..., 3] - boxes1_x0y0x1y1[..., 1])
    boxes2_area = (boxes2_x0y0x1y1[..., 2] - boxes2_x0y0x1y1[..., 0]) * (
                boxes2_x0y0x1y1[..., 3] - boxes2_x0y0x1y1[..., 1])

    # top-left and bottom-right coord, shape: (8, 13, 13, 3, 2)
    left_up = tf.maximum(boxes1_x0y0x1y1[..., :2], boxes2_x0y0x1y1[..., :2])
    right_down = tf.minimum(boxes1_x0y0x1y1[..., 2:], boxes2_x0y0x1y1[..., 2:])

    # intersection area and iou
    inter_section = tf.maximum(right_down - left_up, 0.0)
    inter_area = inter_section[..., 0] * inter_section[..., 1]
    union_area = boxes1_area + boxes2_area - inter_area
    iou = inter_area / (union_area + 1e-9)

    # top-left and bottom-right coord of the enclosing rectangle, shape: (8, 13, 13, 3, 2)
    enclose_left_up = tf.minimum(boxes1_x0y0x1y1[..., :2], boxes2_x0y0x1y1[..., :2])
    enclose_right_down = tf.maximum(boxes1_x0y0x1y1[..., 2:], boxes2_x0y0x1y1[..., 2:])

    # diagnal ** 2
    enclose_wh = enclose_right_down - enclose_left_up
    enclose_c2 = K.pow(enclose_wh[..., 0], 2) + K.pow(enclose_wh[..., 1], 2)

    # center distances between two rectangles
    p2 = K.pow(boxes1[..., 0] - boxes2[..., 0], 2) + K.pow(boxes1[..., 1] - boxes2[..., 1], 2)

    # add av
    atan1 = tf.atan(boxes1[..., 2] / (boxes1[..., 3] + 1e-9))
    atan2 = tf.atan(boxes2[..., 2] / (boxes2[..., 3] + 1e-9))
    v = 4.0 * K.pow(atan1 - atan2, 2) / (math.pi ** 2)
    a = v / (1 - iou + v)

    ciou = iou - 1.0 * p2 / enclose_c2 - 1.0 * a * v
    return ciou


def yolo_loss(args, num_classes, iou_loss_thresh, anchors):
    conv_lbbox = args[2]   # (?, ?, ?, 3*(num_classes+5))
    conv_mbbox = args[1]   # (?, ?, ?, 3*(num_classes+5))
    conv_sbbox = args[0]   # (?, ?, ?, 3*(num_classes+5))
    label_sbbox = args[3]   # (?, ?, ?, 3, num_classes+5)
    label_mbbox = args[4]   # (?, ?, ?, 3, num_classes+5)
    label_lbbox = args[5]   # (?, ?, ?, 3, num_classes+5)
    true_bboxes = args[6]   # (?, 50, 4)
    pred_sbbox = decode(conv_sbbox, anchors[0], 8, num_classes)
    pred_mbbox = decode(conv_mbbox, anchors[1], 16, num_classes)
    pred_lbbox = decode(conv_lbbox, anchors[2], 32, num_classes)
    sbbox_ciou_loss, sbbox_conf_loss, sbbox_prob_loss = loss_layer(conv_sbbox, pred_sbbox, label_sbbox, true_bboxes, 8, num_classes, iou_loss_thresh)
    mbbox_ciou_loss, mbbox_conf_loss, mbbox_prob_loss = loss_layer(conv_mbbox, pred_mbbox, label_mbbox, true_bboxes, 16, num_classes, iou_loss_thresh)
    lbbox_ciou_loss, lbbox_conf_loss, lbbox_prob_loss = loss_layer(conv_lbbox, pred_lbbox, label_lbbox, true_bboxes, 32, num_classes, iou_loss_thresh)

    ciou_loss = (lbbox_ciou_loss + sbbox_ciou_loss + mbbox_ciou_loss) * 3.54
    conf_loss = (lbbox_conf_loss + sbbox_conf_loss + mbbox_conf_loss) * 64.3
    prob_loss = (lbbox_prob_loss + sbbox_prob_loss + mbbox_prob_loss) * 1

    return ciou_loss+conf_loss+prob_loss


def loss_layer(conv, pred, label, bboxes, stride, num_class, iou_loss_thresh):
    conv_shape = tf.shape(conv)
    batch_size = conv_shape[0]
    output_size = conv_shape[1]
    input_size = stride * output_size
    conv = tf.reshape(conv, (batch_size, output_size, output_size,
                             3, 5 + num_class))
    conv_raw_prob = conv[:, :, :, :, 5:]
    conv_raw_conf = conv[:, :, :, :, 4:5]

    pred_xywh = pred[:, :, :, :, 0:4]
    pred_conf = pred[:, :, :, :, 4:5]

    label_xywh = label[:, :, :, :, 0:4]
    respond_bbox = label[:, :, :, :, 4:5]
    label_prob = label[:, :, :, :, 5:]

    # Coordinate loss
    ciou = tf.expand_dims(bbox_giou(pred_xywh, label_xywh), axis=-1)  # (8, 13, 13, 3, 1)
    # ciou = tf.expand_dims(bbox_ciou(pred_xywh, label_xywh), axis=-1)  # (8, 13, 13, 3, 1)
    input_size = tf.cast(input_size, tf.float32)

    # loss weight of the gt bbox: 2-(gt area/img area)
    bbox_loss_scale = 2.0 - 1.0 * label_xywh[:, :, :, :, 2:3] * label_xywh[:, :, :, :, 3:4] / (input_size ** 2)
    ciou_loss = respond_bbox * bbox_loss_scale * (1 - ciou)  # iou loss for respond bbox

    # Classification loss for respond bbox
    prob_loss = respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=label_prob, logits=conv_raw_prob)

    expand_pred_xywh = pred_xywh[:, :, :, :, np.newaxis, :]  # (?, grid_h, grid_w, 3, 1, 4)
    expand_bboxes = bboxes[:, np.newaxis, np.newaxis, np.newaxis, :, :]  # (?, 1, 1, 1, 70, 4)
    iou = bbox_iou(expand_pred_xywh, expand_bboxes)  # IoU between all pred bbox and all gt (?, grid_h, grid_w, 3, 70)
    max_iou = tf.expand_dims(tf.reduce_max(iou, axis=-1), axis=-1)  # max iou: (?, grid_h, grid_w, 3, 1)

    # ignore the bbox which is not respond bbox and max iou < threshold
    respond_bgd = (1.0 - respond_bbox) * tf.cast(max_iou < iou_loss_thresh, tf.float32)

    # Confidence loss
    conf_focal = tf.pow(respond_bbox - pred_conf, 2)

    conf_loss = conf_focal * (
            respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=respond_bbox, logits=conv_raw_conf)
            +
            respond_bgd * tf.nn.sigmoid_cross_entropy_with_logits(labels=respond_bbox, logits=conv_raw_conf)
    )

    ciou_loss = tf.reduce_mean(tf.reduce_sum(ciou_loss, axis=[1, 2, 3, 4]))
    conf_loss = tf.reduce_mean(tf.reduce_sum(conf_loss, axis=[1, 2, 3, 4]))
    prob_loss = tf.reduce_mean(tf.reduce_sum(prob_loss, axis=[1, 2, 3, 4]))

    return ciou_loss, conf_loss, prob_loss


def decode(conv_output, anchors, stride, num_class):
    conv_shape = tf.shape(conv_output)
    batch_size = conv_shape[0]
    output_size = conv_shape[1]
    anchor_per_scale = len(anchors)
    conv_output = tf.reshape(conv_output, (batch_size, output_size, output_size, anchor_per_scale, 5 + num_class))
    conv_raw_dxdy = conv_output[:, :, :, :, 0:2]
    conv_raw_dwdh = conv_output[:, :, :, :, 2:4]
    conv_raw_conf = conv_output[:, :, :, :, 4:5]
    conv_raw_prob = conv_output[:, :, :, :, 5:]
    y = tf.tile(tf.range(output_size, dtype=tf.int32)[:, tf.newaxis], [1, output_size])
    x = tf.tile(tf.range(output_size, dtype=tf.int32)[tf.newaxis, :], [output_size, 1])
    xy_grid = tf.concat([x[:, :, tf.newaxis], y[:, :, tf.newaxis]], axis=-1)
    xy_grid = tf.tile(xy_grid[tf.newaxis, :, :, tf.newaxis, :], [batch_size, 1, 1, anchor_per_scale, 1])
    xy_grid = tf.cast(xy_grid, tf.float32)
    pred_xy = (tf.sigmoid(conv_raw_dxdy) + xy_grid) * stride
    pred_wh = (tf.exp(conv_raw_dwdh) * anchors)
    pred_xywh = tf.concat([pred_xy, pred_wh], axis=-1)
    pred_conf = tf.sigmoid(conv_raw_conf)
    pred_prob = tf.sigmoid(conv_raw_prob)
    return tf.concat([pred_xywh, pred_conf, pred_prob], axis=-1)