Spaces:
Runtime error
Runtime error
File size: 9,583 Bytes
0e371d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import math
import tensorflow.keras.backend as K
import tensorflow as tf
def xywh_to_x1y1x2y2(boxes):
return tf.concat([boxes[..., :2] - boxes[..., 2:] * 0.5, boxes[..., :2] + boxes[..., 2:] * 0.5], axis=-1)
# x,y,w,h
def bbox_iou(boxes1, boxes2):
boxes1_area = boxes1[..., 2] * boxes1[..., 3] # w * h
boxes2_area = boxes2[..., 2] * boxes2[..., 3]
# (x, y, w, h) -> (x0, y0, x1, y1)
boxes1 = xywh_to_x1y1x2y2(boxes1)
boxes2 = xywh_to_x1y1x2y2(boxes2)
# coordinates of intersection
top_left = tf.maximum(boxes1[..., :2], boxes2[..., :2])
bottom_right = tf.minimum(boxes1[..., 2:], boxes2[..., 2:])
intersection_xy = tf.maximum(bottom_right - top_left, 0.0)
intersection_area = intersection_xy[..., 0] * intersection_xy[..., 1]
union_area = boxes1_area + boxes2_area - intersection_area
return 1.0 * intersection_area / (union_area + tf.keras.backend.epsilon())
def bbox_giou(boxes1, boxes2):
boxes1_area = boxes1[..., 2] * boxes1[..., 3] # w*h
boxes2_area = boxes2[..., 2] * boxes2[..., 3]
# (x, y, w, h) -> (x0, y0, x1, y1)
boxes1 = xywh_to_x1y1x2y2(boxes1)
boxes2 = xywh_to_x1y1x2y2(boxes2)
top_left = tf.maximum(boxes1[..., :2], boxes2[..., :2])
bottom_right = tf.minimum(boxes1[..., 2:], boxes2[..., 2:])
intersection_xy = tf.maximum(bottom_right - top_left, 0.0)
intersection_area = intersection_xy[..., 0] * intersection_xy[..., 1]
union_area = boxes1_area + boxes2_area - intersection_area
iou = 1.0 * intersection_area / (union_area + tf.keras.backend.epsilon())
enclose_top_left = tf.minimum(boxes1[..., :2], boxes2[..., :2])
enclose_bottom_right = tf.maximum(boxes1[..., 2:], boxes2[..., 2:])
enclose_xy = enclose_bottom_right - enclose_top_left
enclose_area = enclose_xy[..., 0] * enclose_xy[..., 1]
giou = iou - tf.math.divide_no_nan(enclose_area - union_area, enclose_area)
return giou
def bbox_ciou(boxes1, boxes2):
'''
ciou = iou - p2/c2 - av
:param boxes1: (8, 13, 13, 3, 4) pred_xywh
:param boxes2: (8, 13, 13, 3, 4) label_xywh
:return:
'''
boxes1_x0y0x1y1 = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5,
boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1)
boxes2_x0y0x1y1 = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5,
boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1)
boxes1_x0y0x1y1 = tf.concat([tf.minimum(boxes1_x0y0x1y1[..., :2], boxes1_x0y0x1y1[..., 2:]),
tf.maximum(boxes1_x0y0x1y1[..., :2], boxes1_x0y0x1y1[..., 2:])], axis=-1)
boxes2_x0y0x1y1 = tf.concat([tf.minimum(boxes2_x0y0x1y1[..., :2], boxes2_x0y0x1y1[..., 2:]),
tf.maximum(boxes2_x0y0x1y1[..., :2], boxes2_x0y0x1y1[..., 2:])], axis=-1)
# area
boxes1_area = (boxes1_x0y0x1y1[..., 2] - boxes1_x0y0x1y1[..., 0]) * (
boxes1_x0y0x1y1[..., 3] - boxes1_x0y0x1y1[..., 1])
boxes2_area = (boxes2_x0y0x1y1[..., 2] - boxes2_x0y0x1y1[..., 0]) * (
boxes2_x0y0x1y1[..., 3] - boxes2_x0y0x1y1[..., 1])
# top-left and bottom-right coord, shape: (8, 13, 13, 3, 2)
left_up = tf.maximum(boxes1_x0y0x1y1[..., :2], boxes2_x0y0x1y1[..., :2])
right_down = tf.minimum(boxes1_x0y0x1y1[..., 2:], boxes2_x0y0x1y1[..., 2:])
# intersection area and iou
inter_section = tf.maximum(right_down - left_up, 0.0)
inter_area = inter_section[..., 0] * inter_section[..., 1]
union_area = boxes1_area + boxes2_area - inter_area
iou = inter_area / (union_area + 1e-9)
# top-left and bottom-right coord of the enclosing rectangle, shape: (8, 13, 13, 3, 2)
enclose_left_up = tf.minimum(boxes1_x0y0x1y1[..., :2], boxes2_x0y0x1y1[..., :2])
enclose_right_down = tf.maximum(boxes1_x0y0x1y1[..., 2:], boxes2_x0y0x1y1[..., 2:])
# diagnal ** 2
enclose_wh = enclose_right_down - enclose_left_up
enclose_c2 = K.pow(enclose_wh[..., 0], 2) + K.pow(enclose_wh[..., 1], 2)
# center distances between two rectangles
p2 = K.pow(boxes1[..., 0] - boxes2[..., 0], 2) + K.pow(boxes1[..., 1] - boxes2[..., 1], 2)
# add av
atan1 = tf.atan(boxes1[..., 2] / (boxes1[..., 3] + 1e-9))
atan2 = tf.atan(boxes2[..., 2] / (boxes2[..., 3] + 1e-9))
v = 4.0 * K.pow(atan1 - atan2, 2) / (math.pi ** 2)
a = v / (1 - iou + v)
ciou = iou - 1.0 * p2 / enclose_c2 - 1.0 * a * v
return ciou
def yolo_loss(args, num_classes, iou_loss_thresh, anchors):
conv_lbbox = args[2] # (?, ?, ?, 3*(num_classes+5))
conv_mbbox = args[1] # (?, ?, ?, 3*(num_classes+5))
conv_sbbox = args[0] # (?, ?, ?, 3*(num_classes+5))
label_sbbox = args[3] # (?, ?, ?, 3, num_classes+5)
label_mbbox = args[4] # (?, ?, ?, 3, num_classes+5)
label_lbbox = args[5] # (?, ?, ?, 3, num_classes+5)
true_bboxes = args[6] # (?, 50, 4)
pred_sbbox = decode(conv_sbbox, anchors[0], 8, num_classes)
pred_mbbox = decode(conv_mbbox, anchors[1], 16, num_classes)
pred_lbbox = decode(conv_lbbox, anchors[2], 32, num_classes)
sbbox_ciou_loss, sbbox_conf_loss, sbbox_prob_loss = loss_layer(conv_sbbox, pred_sbbox, label_sbbox, true_bboxes, 8, num_classes, iou_loss_thresh)
mbbox_ciou_loss, mbbox_conf_loss, mbbox_prob_loss = loss_layer(conv_mbbox, pred_mbbox, label_mbbox, true_bboxes, 16, num_classes, iou_loss_thresh)
lbbox_ciou_loss, lbbox_conf_loss, lbbox_prob_loss = loss_layer(conv_lbbox, pred_lbbox, label_lbbox, true_bboxes, 32, num_classes, iou_loss_thresh)
ciou_loss = (lbbox_ciou_loss + sbbox_ciou_loss + mbbox_ciou_loss) * 3.54
conf_loss = (lbbox_conf_loss + sbbox_conf_loss + mbbox_conf_loss) * 64.3
prob_loss = (lbbox_prob_loss + sbbox_prob_loss + mbbox_prob_loss) * 1
return ciou_loss+conf_loss+prob_loss
def loss_layer(conv, pred, label, bboxes, stride, num_class, iou_loss_thresh):
conv_shape = tf.shape(conv)
batch_size = conv_shape[0]
output_size = conv_shape[1]
input_size = stride * output_size
conv = tf.reshape(conv, (batch_size, output_size, output_size,
3, 5 + num_class))
conv_raw_prob = conv[:, :, :, :, 5:]
conv_raw_conf = conv[:, :, :, :, 4:5]
pred_xywh = pred[:, :, :, :, 0:4]
pred_conf = pred[:, :, :, :, 4:5]
label_xywh = label[:, :, :, :, 0:4]
respond_bbox = label[:, :, :, :, 4:5]
label_prob = label[:, :, :, :, 5:]
# Coordinate loss
ciou = tf.expand_dims(bbox_giou(pred_xywh, label_xywh), axis=-1) # (8, 13, 13, 3, 1)
# ciou = tf.expand_dims(bbox_ciou(pred_xywh, label_xywh), axis=-1) # (8, 13, 13, 3, 1)
input_size = tf.cast(input_size, tf.float32)
# loss weight of the gt bbox: 2-(gt area/img area)
bbox_loss_scale = 2.0 - 1.0 * label_xywh[:, :, :, :, 2:3] * label_xywh[:, :, :, :, 3:4] / (input_size ** 2)
ciou_loss = respond_bbox * bbox_loss_scale * (1 - ciou) # iou loss for respond bbox
# Classification loss for respond bbox
prob_loss = respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=label_prob, logits=conv_raw_prob)
expand_pred_xywh = pred_xywh[:, :, :, :, np.newaxis, :] # (?, grid_h, grid_w, 3, 1, 4)
expand_bboxes = bboxes[:, np.newaxis, np.newaxis, np.newaxis, :, :] # (?, 1, 1, 1, 70, 4)
iou = bbox_iou(expand_pred_xywh, expand_bboxes) # IoU between all pred bbox and all gt (?, grid_h, grid_w, 3, 70)
max_iou = tf.expand_dims(tf.reduce_max(iou, axis=-1), axis=-1) # max iou: (?, grid_h, grid_w, 3, 1)
# ignore the bbox which is not respond bbox and max iou < threshold
respond_bgd = (1.0 - respond_bbox) * tf.cast(max_iou < iou_loss_thresh, tf.float32)
# Confidence loss
conf_focal = tf.pow(respond_bbox - pred_conf, 2)
conf_loss = conf_focal * (
respond_bbox * tf.nn.sigmoid_cross_entropy_with_logits(labels=respond_bbox, logits=conv_raw_conf)
+
respond_bgd * tf.nn.sigmoid_cross_entropy_with_logits(labels=respond_bbox, logits=conv_raw_conf)
)
ciou_loss = tf.reduce_mean(tf.reduce_sum(ciou_loss, axis=[1, 2, 3, 4]))
conf_loss = tf.reduce_mean(tf.reduce_sum(conf_loss, axis=[1, 2, 3, 4]))
prob_loss = tf.reduce_mean(tf.reduce_sum(prob_loss, axis=[1, 2, 3, 4]))
return ciou_loss, conf_loss, prob_loss
def decode(conv_output, anchors, stride, num_class):
conv_shape = tf.shape(conv_output)
batch_size = conv_shape[0]
output_size = conv_shape[1]
anchor_per_scale = len(anchors)
conv_output = tf.reshape(conv_output, (batch_size, output_size, output_size, anchor_per_scale, 5 + num_class))
conv_raw_dxdy = conv_output[:, :, :, :, 0:2]
conv_raw_dwdh = conv_output[:, :, :, :, 2:4]
conv_raw_conf = conv_output[:, :, :, :, 4:5]
conv_raw_prob = conv_output[:, :, :, :, 5:]
y = tf.tile(tf.range(output_size, dtype=tf.int32)[:, tf.newaxis], [1, output_size])
x = tf.tile(tf.range(output_size, dtype=tf.int32)[tf.newaxis, :], [output_size, 1])
xy_grid = tf.concat([x[:, :, tf.newaxis], y[:, :, tf.newaxis]], axis=-1)
xy_grid = tf.tile(xy_grid[tf.newaxis, :, :, tf.newaxis, :], [batch_size, 1, 1, anchor_per_scale, 1])
xy_grid = tf.cast(xy_grid, tf.float32)
pred_xy = (tf.sigmoid(conv_raw_dxdy) + xy_grid) * stride
pred_wh = (tf.exp(conv_raw_dwdh) * anchors)
pred_xywh = tf.concat([pred_xy, pred_wh], axis=-1)
pred_conf = tf.sigmoid(conv_raw_conf)
pred_prob = tf.sigmoid(conv_raw_prob)
return tf.concat([pred_xywh, pred_conf, pred_prob], axis=-1)
|