Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import os
|
2 |
import random
|
3 |
-
import base64
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
@@ -96,7 +95,7 @@ def vote(filename, vote_type):
|
|
96 |
logger.info(f"Updated {vote_type} count for {filename}")
|
97 |
else:
|
98 |
logger.warning(f"File {filename} not found in metadata")
|
99 |
-
return image_metadata.values.tolist()
|
100 |
|
101 |
if torch.cuda.is_available():
|
102 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
@@ -180,13 +179,19 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
180 |
)
|
181 |
|
182 |
delete_all_button.click(fn=delete_all_images, outputs=[image_gallery, metadata_df])
|
183 |
-
|
|
|
|
|
184 |
delete_image_button.click(fn=delete_image, inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
185 |
|
186 |
for button, vote_type in [(like_button, 'Likes'), (dislike_button, 'Dislikes'), (heart_button, 'Hearts')]:
|
187 |
-
button.click(
|
|
|
|
|
|
|
|
|
188 |
|
189 |
demo.load(fn=lambda: (get_image_gallery(), image_metadata.values.tolist()), outputs=[image_gallery, metadata_df])
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
-
demo.queue(max_size=20).launch(
|
|
|
1 |
import os
|
2 |
import random
|
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
|
|
95 |
logger.info(f"Updated {vote_type} count for {filename}")
|
96 |
else:
|
97 |
logger.warning(f"File {filename} not found in metadata")
|
98 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
99 |
|
100 |
if torch.cuda.is_available():
|
101 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
|
179 |
)
|
180 |
|
181 |
delete_all_button.click(fn=delete_all_images, outputs=[image_gallery, metadata_df])
|
182 |
+
|
183 |
+
image_gallery.select(fn=lambda evt, x=None: evt, inputs=None, outputs=selected_image)
|
184 |
+
|
185 |
delete_image_button.click(fn=delete_image, inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
186 |
|
187 |
for button, vote_type in [(like_button, 'Likes'), (dislike_button, 'Dislikes'), (heart_button, 'Hearts')]:
|
188 |
+
button.click(
|
189 |
+
fn=lambda x, vt=vote_type: vote(x, vt) if x else (get_image_gallery(), image_metadata.values.tolist()),
|
190 |
+
inputs=[selected_image],
|
191 |
+
outputs=[image_gallery, metadata_df]
|
192 |
+
)
|
193 |
|
194 |
demo.load(fn=lambda: (get_image_gallery(), image_metadata.values.tolist()), outputs=[image_gallery, metadata_df])
|
195 |
|
196 |
if __name__ == "__main__":
|
197 |
+
demo.queue(max_size=20).launch(debug=False)
|