import requests
import streamlit as st
import os
from huggingface_hub import InferenceClient
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud'
API_KEY = os.getenv('API_KEY')
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
# Prompt Set of Examples:
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
def StreamLLMChatResponse(prompt):
endpoint_url = API_URL
hf_token = API_KEY
client = InferenceClient(endpoint_url, token=hf_token)
gen_kwargs = dict(
max_new_tokens=512,
top_k=30,
top_p=0.9,
temperature=0.2,
repetition_penalty=1.02,
stop_sequences=["\nUser:", "<|endoftext|>", ""],
)
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
report=[]
res_box = st.empty()
collected_chunks=[]
collected_messages=[]
for r in stream:
if r.token.special:
continue
if r.token.text in gen_kwargs["stop_sequences"]:
break
collected_chunks.append(r.token.text)
chunk_message = r.token.text
collected_messages.append(chunk_message)
try:
report.append(r.token.text)
if len(r.token.text) > 0:
result="".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
st.markdown(response.json())
return response.json()
def get_output(prompt):
return query({"inputs": prompt})
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
import requests
import time
import re
import textract
import zipfile # New import for zipping files
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from templates import css, bot_template, user_template
# page config and sidebar declares up front allow all other functions to see global class variables
st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide")
should_save = st.sidebar.checkbox("💾 Save", value=True)
def generate_filename_old(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") # Date and time DD-HHMM
safe_prompt = "".join(x for x in prompt if x.isalnum())[:90] # Limit file name size and trim whitespace
return f"{safe_date_time}_{safe_prompt}.{file_type}" # Return a safe file name
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def transcribe_audio(openai_key, file_path, model):
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
headers = {
"Authorization": f"Bearer {openai_key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
transcript = response.json().get('text')
#st.write('Responses:')
#st.write(chatResponse)
filename = generate_filename(transcript, 'txt')
#create_file(filename, transcript, chatResponse)
response = chatResponse
user_prompt = transcript
create_file(filename, user_prompt, response, should_save)
return transcript
else:
st.write(response.json())
st.error("Error in API call.")
return None
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
# Step 2: Extract base filename without extension
base_filename, ext = os.path.splitext(filename)
# Step 3: Check if the response contains Python code
has_python_code = bool(re.search(r"```python([\s\S]*?)```", response))
# Step 4: Write files based on type
if ext in ['.txt', '.htm', '.md']:
# Create Prompt file
with open(f"{base_filename}-Prompt.txt", 'w') as file:
file.write(prompt)
# Create Response file
with open(f"{base_filename}-Response.md", 'w') as file:
file.write(response)
# Create Code file if Python code is present
if has_python_code:
# Extract Python code from the response
python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
with open(f"{base_filename}-Code.py", 'w') as file:
file.write(python_code)
def create_file_old(filename, prompt, response, should_save=True):
if not should_save:
return
if filename.endswith(".txt"):
with open(filename, 'w') as file:
file.write(f"{prompt}\n{response}")
elif filename.endswith(".htm"):
with open(filename, 'w') as file:
file.write(f"{prompt} {response}")
elif filename.endswith(".md"):
with open(filename, 'w') as file:
file.write(f"{prompt}\n\n{response}")
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
try:
data = file.read()
except:
st.write('')
return file_path
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'{file_name}'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
for chunk in openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=conversation,
temperature=0.5,
stream=True
):
collected_chunks.append(chunk) # save the event response
chunk_message = chunk['choices'][0]['delta'] # extract the message
collected_messages.append(chunk_message) # save the message
content=chunk["choices"][0].get("delta",{}).get("content")
try:
report.append(content)
if len(content) > 0:
result = "".join(report).strip()
#result = result.replace("\n", "")
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
st.write("Elapsed time:")
st.write(time.time() - start_time)
return full_reply_content
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(file_content)>0:
conversation.append({'role': 'assistant', 'content': file_content})
response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
return response['choices'][0]['message']['content']
def extract_mime_type(file):
# Check if the input is a string
if isinstance(file, str):
pattern = r"type='(.*?)'"
match = re.search(pattern, file)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract MIME type from {file}")
# If it's not a string, assume it's a streamlit.UploadedFile object
elif isinstance(file, streamlit.UploadedFile):
return file.type
else:
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
from io import BytesIO
import re
def extract_file_extension(file):
# get the file name directly from the UploadedFile object
file_name = file.name
pattern = r".*?\.(.*?)$"
match = re.search(pattern, file_name)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract file extension from {file_name}")
def pdf2txt(docs):
text = ""
for file in docs:
file_extension = extract_file_extension(file)
# print the file extension
st.write(f"File type extension: {file_extension}")
# read the file according to its extension
try:
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
text += file.getvalue().decode('utf-8')
elif file_extension.lower() == 'pdf':
from PyPDF2 import PdfReader
pdf = PdfReader(BytesIO(file.getvalue()))
for page in range(len(pdf.pages)):
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
except Exception as e:
st.write(f"Error processing file {file.name}: {e}")
return text
def pdf2txt_old(pdf_docs):
st.write(pdf_docs)
for file in pdf_docs:
mime_type = extract_mime_type(file)
st.write(f"MIME type of file: {mime_type}")
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def txt2chunks(text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_text(text)
def vector_store(text_chunks):
key = os.getenv('OPENAI_API_KEY')
embeddings = OpenAIEmbeddings(openai_api_key=key)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
def get_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
def process_user_input(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
template = user_template if i % 2 == 0 else bot_template
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
# Save file output from PDF query results
filename = generate_filename(user_question, 'txt')
#create_file(filename, user_question, message.content)
response = message.content
user_prompt = user_question
create_file(filename, user_prompt, response, should_save)
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
def divide_prompt(prompt, max_length):
words = prompt.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if len(word) + current_length <= max_length:
current_length += len(word) + 1 # Adding 1 to account for spaces
current_chunk.append(word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
chunks.append(' '.join(current_chunk)) # Append the final chunk
return chunks
def create_zip_of_files(files):
"""
Create a zip file from a list of files.
"""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_zip_download_link(zip_file):
"""
Generate a link to download the zip file.
"""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'Download All'
return href
def main():
st.title("Medical Llama Test Bench with Inference Endpoints Llama 7B")
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
example_input = st.text_input("Enter your example text:", value=prompt)
if st.button("Run Prompt With Dr Llama"):
StreamLLMChatResponse(example_input)
# clip ---
openai.api_key = os.getenv('OPENAI_API_KEY')
# File type for output, model choice
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
filename = None
# prompt interfaces
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
# file section interface for prompts against large documents as context
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
# Document section chat
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("👁️ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
response = chat_with_model(user_prompt, section, model_choice) # *************************************
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('💬 Chat'):
st.write('Reasoning with your inputs...')
#response = chat_with_model(user_prompt, ''.join(list(document_sections,)), model_choice) # *************************************
# Divide the user_prompt into smaller sections
user_prompt_sections = divide_prompt(user_prompt, max_length)
full_response = ''
for prompt_section in user_prompt_sections:
# Process each section with the model
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
full_response += response + '\n' # Combine the responses
#st.write('Response:')
#st.write(full_response)
response = full_response
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
all_files = glob.glob("*.*")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
# Added "Delete All" button
if st.sidebar.button("🗑 Delete All"):
for file in all_files:
os.remove(file)
st.experimental_rerun()
# Added "Download All" button
if st.sidebar.button("⬇️ Download All"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
# Sidebar of Files Saving History and surfacing files as context of prompts and responses
file_contents=''
next_action=''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
with col1:
if st.button("🌐", key="md_"+file): # md emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='md'
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("📂", key="open_"+file): # open emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='open'
with col4:
if st.button("🔍", key="read_"+file): # search emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='search'
with col5:
if st.button("🗑", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
if len(file_contents) > 0:
if next_action=='open':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
if next_action=='md':
st.markdown(file_contents)
if next_action=='search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
st.write('Reasoning with your inputs...')
response = chat_with_model(user_prompt, file_contents, model_choice)
filename = generate_filename(file_contents, choice)
create_file(filename, user_prompt, response, should_save)
st.experimental_rerun()
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
process_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("import documents", accept_multiple_files=True)
with st.spinner("Processing"):
raw = pdf2txt(docs)
if len(raw) > 0:
length = str(len(raw))
text_chunks = txt2chunks(raw)
vectorstore = vector_store(text_chunks)
st.session_state.conversation = get_chain(vectorstore)
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
filename = generate_filename(raw, 'txt')
create_file(filename, raw, '', should_save)
#create_file(filename, raw, '')
if __name__ == "__main__":
main()