Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# original:
|
2 |
+
#import gradio as gr
|
3 |
+
#gr.Interface.load("models/sileod/deberta-v3-base-tasksource-nli").launch()
|
4 |
+
|
5 |
+
# chatGPT prompt1: Rewrite this program in python and gradio to load an example file with two input text fields and output of the classification field.
|
6 |
+
|
7 |
import gradio as gr
|
8 |
|
9 |
+
def classify_text(text1, text2):
|
10 |
+
# Load pre-trained model
|
11 |
+
model = gr.load_model("models/sileod/deberta-v3-base-tasksource-nli")
|
12 |
+
|
13 |
+
# Perform classification on input text
|
14 |
+
output = model.predict([text1, text2])[0]
|
15 |
+
|
16 |
+
return output
|
17 |
+
|
18 |
+
# Create input fields
|
19 |
+
input_text1 = gr.Textbox(label="Input Text 1")
|
20 |
+
input_text2 = gr.Textbox(label="Input Text 2")
|
21 |
+
|
22 |
+
# Create output field
|
23 |
+
output_text = gr.Textbox(label="Classification Output")
|
24 |
+
|
25 |
+
# Create Gradio interface
|
26 |
+
gr.Interface(classify_text,
|
27 |
+
inputs=[input_text1, input_text2],
|
28 |
+
outputs=output_text,
|
29 |
+
examples=[["Example Text 1", "Example Text 2"]]).launch()
|