Spaces:
Build error
Build error
Upload 2 files
Browse files- app.py +196 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from tqdm import tqdm
|
3 |
+
import pinecone
|
4 |
+
import torch
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from transformers import (
|
7 |
+
pipeline,
|
8 |
+
AutoTokenizer,
|
9 |
+
AutoModelForCausalLM,
|
10 |
+
AutoModelForSeq2SeqLM,
|
11 |
+
)
|
12 |
+
import streamlit as st
|
13 |
+
import openai
|
14 |
+
|
15 |
+
|
16 |
+
# Initialize models from HuggingFace
|
17 |
+
|
18 |
+
|
19 |
+
@st.experimental_singleton
|
20 |
+
def get_t5_model():
|
21 |
+
return pipeline("summarization", model="t5-small", tokenizer="t5-small")
|
22 |
+
|
23 |
+
|
24 |
+
@st.experimental_singleton
|
25 |
+
def get_flan_t5_model():
|
26 |
+
return pipeline(
|
27 |
+
"summarization", model="google/flan-t5-small", tokenizer="google/flan-t5-small"
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
@st.experimental_singleton
|
32 |
+
def get_mpnet_embedding_model():
|
33 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
+
model = SentenceTransformer(
|
35 |
+
"sentence-transformers/all-mpnet-base-v2", device=device
|
36 |
+
)
|
37 |
+
model.max_seq_length = 512
|
38 |
+
return model
|
39 |
+
|
40 |
+
|
41 |
+
@st.experimental_singleton
|
42 |
+
def get_sgpt_embedding_model():
|
43 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
+
model = SentenceTransformer(
|
45 |
+
"Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device
|
46 |
+
)
|
47 |
+
model.max_seq_length = 512
|
48 |
+
return model
|
49 |
+
|
50 |
+
|
51 |
+
@st.experimental_memo
|
52 |
+
def save_key(api_key):
|
53 |
+
return api_key
|
54 |
+
|
55 |
+
|
56 |
+
def query_pinecone(query, top_k, model, index):
|
57 |
+
# generate embeddings for the query
|
58 |
+
xq = model.encode([query]).tolist()
|
59 |
+
# search pinecone index for context passage with the answer
|
60 |
+
xc = index.query(xq, top_k=top_k, include_metadata=True)
|
61 |
+
return xc
|
62 |
+
|
63 |
+
|
64 |
+
def format_query(query_results):
|
65 |
+
# extract passage_text from Pinecone search result
|
66 |
+
context = [result["metadata"]["Text"] for result in query_results["matches"]]
|
67 |
+
return context
|
68 |
+
|
69 |
+
|
70 |
+
def gpt3_summary(text):
|
71 |
+
response = openai.Completion.create(
|
72 |
+
model="text-davinci-003",
|
73 |
+
prompt=text + "\n\nTl;dr",
|
74 |
+
temperature=0.1,
|
75 |
+
max_tokens=512,
|
76 |
+
top_p=1.0,
|
77 |
+
frequency_penalty=0.0,
|
78 |
+
presence_penalty=1,
|
79 |
+
)
|
80 |
+
return response.choices[0].text
|
81 |
+
|
82 |
+
|
83 |
+
def gpt3_qa(query, answer):
|
84 |
+
response = openai.Completion.create(
|
85 |
+
model="text-davinci-003",
|
86 |
+
prompt="Q: " + query + "\nA: " + answer,
|
87 |
+
temperature=0,
|
88 |
+
max_tokens=512,
|
89 |
+
top_p=1,
|
90 |
+
frequency_penalty=0.0,
|
91 |
+
presence_penalty=0.0,
|
92 |
+
stop=["\n"],
|
93 |
+
)
|
94 |
+
return response.choices[0].text
|
95 |
+
|
96 |
+
|
97 |
+
st.title("Abstractive Question Answering - APPL")
|
98 |
+
|
99 |
+
query_text = st.text_input("Input Query", value="Who is the CEO of Apple?")
|
100 |
+
|
101 |
+
num_results = int(st.number_input("Number of Results to query", 1, 5, value=2))
|
102 |
+
|
103 |
+
|
104 |
+
# Choose encoder model
|
105 |
+
|
106 |
+
encoder_models_choice = ["MPNET", "SGPT"]
|
107 |
+
|
108 |
+
encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)
|
109 |
+
|
110 |
+
|
111 |
+
# Choose decoder model
|
112 |
+
|
113 |
+
decoder_models_choice = ["GPT3 (QA_davinci)", "GPT3 (text_davinci)", "T5", "FLAN-T5"]
|
114 |
+
|
115 |
+
decoder_model = st.selectbox("Select Decoder Model", decoder_models_choice)
|
116 |
+
|
117 |
+
|
118 |
+
if encoder_model == "MPNET":
|
119 |
+
# Connect to pinecone environment
|
120 |
+
pinecone.init(
|
121 |
+
api_key="ea9fd320-6f8a-4edd-bf41-9e972b95cbf9", environment="us-east1-gcp"
|
122 |
+
)
|
123 |
+
pinecone_index_name = "week2-all-mpnet-base"
|
124 |
+
pinecone_index = pinecone.Index(pinecone_index_name)
|
125 |
+
retriever_model = get_mpnet_embedding_model()
|
126 |
+
|
127 |
+
elif encoder_model == "SGPT":
|
128 |
+
# Connect to pinecone environment
|
129 |
+
pinecone.init(
|
130 |
+
api_key="0d8215d7-4ad5-4c76-8c45-4a40c0f6a1b7", environment="us-east1-gcp"
|
131 |
+
)
|
132 |
+
pinecone_index_name = "week2-sgpt-125m"
|
133 |
+
pinecone_index = pinecone.Index(pinecone_index_name)
|
134 |
+
retriever_model = get_sgpt_embedding_model()
|
135 |
+
|
136 |
+
|
137 |
+
query_results = query_pinecone(query_text, num_results, retriever_model, pinecone_index)
|
138 |
+
|
139 |
+
context_list = format_query(query_results)
|
140 |
+
|
141 |
+
|
142 |
+
st.subheader("Answer:")
|
143 |
+
|
144 |
+
|
145 |
+
if decoder_model == "GPT3 (text_davinci)":
|
146 |
+
openai_key = st.text_input(
|
147 |
+
"Enter OpenAI key",
|
148 |
+
value="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",
|
149 |
+
type="password",
|
150 |
+
)
|
151 |
+
api_key = save_key(openai_key)
|
152 |
+
openai.api_key = api_key
|
153 |
+
output_text = []
|
154 |
+
for context_text in context_list:
|
155 |
+
output_text.append(gpt3_summary(context_text))
|
156 |
+
generated_text = " ".join(output_text)
|
157 |
+
st.write(gpt3_summary(generated_text))
|
158 |
+
|
159 |
+
elif decoder_model == "GPT3 - QA":
|
160 |
+
openai_key = st.text_input(
|
161 |
+
"Enter OpenAI key",
|
162 |
+
value="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",
|
163 |
+
type="password",
|
164 |
+
)
|
165 |
+
api_key = save_key(openai_key)
|
166 |
+
openai.api_key = api_key
|
167 |
+
output_text = []
|
168 |
+
for context_text in context_list:
|
169 |
+
output_text.append(gpt3_qa(query_text, context_text))
|
170 |
+
generated_text = " ".join(output_text)
|
171 |
+
st.write(gpt3_qa(query_text, generated_text))
|
172 |
+
|
173 |
+
elif decoder_model == "T5":
|
174 |
+
t5_pipeline = get_t5_model()
|
175 |
+
output_text = []
|
176 |
+
for context_text in context_list:
|
177 |
+
output_text.append(t5_pipeline(context_text)[0]["summary_text"])
|
178 |
+
generated_text = " ".join(output_text)
|
179 |
+
st.write(t5_pipeline(generated_text)[0]["summary_text"])
|
180 |
+
|
181 |
+
elif decoder_model == "FLAN-T5":
|
182 |
+
flan_t5_pipeline = get_flan_t5_model()
|
183 |
+
output_text = []
|
184 |
+
for context_text in context_list:
|
185 |
+
output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"])
|
186 |
+
generated_text = " ".join(output_text)
|
187 |
+
st.write(flan_t5_pipeline(generated_text)[0]["summary_text"])
|
188 |
+
|
189 |
+
show_retrieved_text = st.checkbox("Show Retrieved Text", value=False)
|
190 |
+
|
191 |
+
if show_retrieved_text:
|
192 |
+
|
193 |
+
st.subheader("Retrieved Text:")
|
194 |
+
|
195 |
+
for context_text in context_list:
|
196 |
+
st.markdown(f"- {context_text}")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
tqdm
|
3 |
+
pinecone-client
|
4 |
+
torch
|
5 |
+
sentence_transformers
|
6 |
+
transformers
|
7 |
+
streamlit
|
8 |
+
openai
|