Spaces:
Build error
Build error
Upload 2 files
Browse files
app.py
CHANGED
@@ -42,13 +42,16 @@ with col1:
|
|
42 |
)
|
43 |
|
44 |
with col1:
|
45 |
-
years_choice = ["2020", "2019", "2018", "2017", "2016"]
|
46 |
|
47 |
with col1:
|
48 |
year = st.selectbox("Year", years_choice)
|
49 |
|
50 |
with col1:
|
51 |
-
quarter = st.selectbox("Quarter", ["Q1", "Q2", "Q3", "Q4"])
|
|
|
|
|
|
|
52 |
|
53 |
ticker_choice = [
|
54 |
"AAPL",
|
@@ -127,6 +130,7 @@ query_results = query_pinecone(
|
|
127 |
year,
|
128 |
quarter,
|
129 |
ticker,
|
|
|
130 |
threshold,
|
131 |
)
|
132 |
|
|
|
42 |
)
|
43 |
|
44 |
with col1:
|
45 |
+
years_choice = ["2020", "2019", "2018", "2017", "2016", "All"]
|
46 |
|
47 |
with col1:
|
48 |
year = st.selectbox("Year", years_choice)
|
49 |
|
50 |
with col1:
|
51 |
+
quarter = st.selectbox("Quarter", ["Q1", "Q2", "Q3", "Q4", "All"])
|
52 |
+
|
53 |
+
with col1:
|
54 |
+
participant_type = st.selectbox("Speaker", ["Company Speaker", "Analyst"])
|
55 |
|
56 |
ticker_choice = [
|
57 |
"AAPL",
|
|
|
130 |
year,
|
131 |
quarter,
|
132 |
ticker,
|
133 |
+
participant_type,
|
134 |
threshold,
|
135 |
)
|
136 |
|
utils.py
CHANGED
@@ -61,21 +61,72 @@ def save_key(api_key):
|
|
61 |
return api_key
|
62 |
|
63 |
|
64 |
-
def query_pinecone(
|
|
|
|
|
65 |
# generate embeddings for the query
|
66 |
xq = model.encode([query]).tolist()
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
# filter the context passages based on the score threshold
|
80 |
filtered_matches = []
|
81 |
for match in xc["matches"]:
|
@@ -91,7 +142,7 @@ def format_query(query_results):
|
|
91 |
return context
|
92 |
|
93 |
|
94 |
-
def sentence_id_combine(data, query_results, lag=
|
95 |
# Extract sentence IDs from query results
|
96 |
ids = [result["metadata"]["Sentence_id"] for result in query_results["matches"]]
|
97 |
# Generate new IDs by adding a lag value to the original IDs
|
|
|
61 |
return api_key
|
62 |
|
63 |
|
64 |
+
def query_pinecone(
|
65 |
+
query, top_k, model, index, year, quarter, ticker, participant_type, threshold=0.25
|
66 |
+
):
|
67 |
# generate embeddings for the query
|
68 |
xq = model.encode([query]).tolist()
|
69 |
+
|
70 |
+
if participant_type == "Company Speaker":
|
71 |
+
participant = "Speaker"
|
72 |
+
else:
|
73 |
+
participant = participant_type
|
74 |
+
|
75 |
+
if year == "All":
|
76 |
+
if quarter == "All":
|
77 |
+
xc = index.query(
|
78 |
+
xq,
|
79 |
+
top_k=top_k,
|
80 |
+
filter={
|
81 |
+
"Year": {
|
82 |
+
"$in": [
|
83 |
+
int("2020"),
|
84 |
+
int("2019"),
|
85 |
+
int("2018"),
|
86 |
+
int("2017"),
|
87 |
+
int("2016"),
|
88 |
+
]
|
89 |
+
},
|
90 |
+
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
91 |
+
"Ticker": {"$eq": ticker},
|
92 |
+
"QA_Flag": {"$eq": participant},
|
93 |
+
},
|
94 |
+
include_metadata=True,
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
xc = index.query(
|
98 |
+
xq,
|
99 |
+
top_k=top_k,
|
100 |
+
filter={
|
101 |
+
"Year": {
|
102 |
+
"$in": [
|
103 |
+
int("2020"),
|
104 |
+
int("2019"),
|
105 |
+
int("2018"),
|
106 |
+
int("2017"),
|
107 |
+
int("2016"),
|
108 |
+
]
|
109 |
+
},
|
110 |
+
"Quarter": {"$eq": quarter},
|
111 |
+
"Ticker": {"$eq": ticker},
|
112 |
+
"QA_Flag": {"$eq": participant},
|
113 |
+
},
|
114 |
+
include_metadata=True,
|
115 |
+
)
|
116 |
+
else:
|
117 |
+
# search pinecone index for context passage with the answer
|
118 |
+
xc = index.query(
|
119 |
+
xq,
|
120 |
+
top_k=top_k,
|
121 |
+
filter={
|
122 |
+
"Year": int(year),
|
123 |
+
"Quarter": {"$eq": quarter},
|
124 |
+
"Ticker": {"$eq": ticker},
|
125 |
+
"QA_Flag": {"$eq": participant},
|
126 |
+
},
|
127 |
+
include_metadata=True,
|
128 |
+
)
|
129 |
+
|
130 |
# filter the context passages based on the score threshold
|
131 |
filtered_matches = []
|
132 |
for match in xc["matches"]:
|
|
|
142 |
return context
|
143 |
|
144 |
|
145 |
+
def sentence_id_combine(data, query_results, lag=1):
|
146 |
# Extract sentence IDs from query results
|
147 |
ids = [result["metadata"]["Sentence_id"] for result in query_results["matches"]]
|
148 |
# Generate new IDs by adding a lag value to the original IDs
|