import pandas as pd import numpy as np import tensorflow as tf from keras.optimizers import SGD, Adagrad, RMSprop, Adadelta, Adam from keras.models import Sequential from keras.layers import Dense, Dropout from keras.callbacks import EarlyStopping import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import RendererAgg _lock = RendererAgg.lock from sklearn import linear_model, datasets from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier tf.random.set_seed(0) import streamlit as st data = datasets.load_breast_cancer() df = pd.DataFrame(data["data"], columns=data["feature_names"]) df["target"] = data["target"] X = df.drop("target", axis=1) y = df["target"] X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=0.7, random_state=0 ) def plot_loss(history): fig, ax = plt.subplots() ax.plot(history.history["loss"], label="loss") ax.plot(history.history["val_loss"], label="val_loss") ax.set_xlabel("Epoch") ax.set_ylabel("Error") ax.set_title("Train Loss vs Validation Loss") ax.legend() ax.grid(True) return fig def create_model(): model = Sequential() model.add( Dense(32, kernel_initializer="normal", input_dim=30, activation="leaky_relu") ) model.add(Dense(16, kernel_initializer="uniform", activation="leaky_relu")) model.add(Dropout(rate=0.3)) model.add(Dense(16, kernel_initializer="uniform", activation="sigmoid")) model.add(Dropout(rate=0.4)) model.add(Dense(1, activation="sigmoid")) return model def fit_model(model, optmizer, X_train, X_test, y_test, batch_size=32): model.compile(loss="binary_crossentropy", optimizer=optimizer, metrics=["accuracy"]) callback = EarlyStopping(monitor="loss", patience=10) history = model.fit( X_train, y_train, # Setting Batch Size to number of samples for Vanilla GD batch_size=X_train.shape[0], validation_data=(X_test, y_test), epochs=150, callbacks=[callback], verbose=0, ) return history gd_types = [ "Gradient Descent", "Stochastic Gradient Descent", "Mini-Batch Gradient Descent", "Adagrad", "RMSProp", "Adam", ] with st.sidebar: choice = st.selectbox("Optimizer:", options=gd_types) if ( choice == "Gradient Descent" or choice == "Stochastic Gradient Descent" or choice == "Mini-Batch Gradient Descent" ): lr = st.slider( "Learning Rate:", min_value=0.01, max_value=1.00, value=0.01, step=0.01 ) if choice == "Mini-Batch Gradient Descent": batch_size = st.slider( "Batch Size:", min_value=1, max_value=100, value=50, step=10 ) else: batch_size = st.select_slider( "Batch Size:", [1, 2, 4, 8, 16, 32, 64], disabled=True ) momentum = st.slider( "Momentum Factor:", min_value=0.01, max_value=1.00, value=0.01, step=0.01 ) nag = st.checkbox("Nesterov Accelerated Momentum") elif choice == "Adagrad": lr = st.slider( "Learning Rate:", min_value=0.01, max_value=1.00, value=0.1, step=0.01 ) batch_size = st.slider( "Batch Size:", min_value=1, max_value=100, value=50, step=10 ) elif choice == "RMSProp": lr = st.slider( "Learning Rate:", min_value=0.01, max_value=1.00, value=0.01, step=0.01 ) batch_size = st.slider( "Batch Size:", min_value=1, max_value=100, value=50, step=10 ) rho = st.slider( "Exponential Decay Rate:", min_value=0.1, max_value=1.0, value=0.9, step=0.1 ) elif choice == "Adam": lr = st.slider( "Learning Rate:", min_value=0.01, max_value=1.00, value=0.01, step=0.01 ) batch_size = st.slider( "Batch Size:", min_value=1, max_value=100, value=50, step=10 ) beta1 = st.slider( "Exponential Decay Rate for Moments:", min_value=0.1, max_value=1.0, value=0.9, step=0.1, ) beta2 = st.slider( "Exponential Decay Rate for Variance:", min_value=0.01, max_value=1.00, value=0.99, step=0.01, ) st.title("Optimizers in Deep Learning") st.write( "A Neural Network has been trained on the Breast Cancer Dataset. We monitor the convergence of different optimizers during the training." ) st.subheader(choice) if choice == "Gradient Descent": model = create_model() optimizer = SGD(learning_rate=lr, momentum=momentum, nesterov=nag) history = fit_model( model, optimizer, X_train, X_test, y_test, batch_size=X_train.shape[0] ) st.pyplot(plot_loss(history)) elif choice == "Stochastic Gradient Descent": model = create_model() optimizer = SGD(learning_rate=lr, momentum=momentum, nesterov=nag) history = fit_model(model, optimizer, X_train, X_test, y_test, batch_size=1) st.pyplot(plot_loss(history)) elif choice == "Mini-Batch Gradient Descent": model = create_model() optimizer = SGD(learning_rate=lr, momentum=momentum, nesterov=nag) history = fit_model( model, optimizer, X_train, X_test, y_test, batch_size=batch_size ) st.pyplot(plot_loss(history)) elif choice == "Adagrad": model = create_model() optimizer = Adagrad(learning_rate=lr) history = fit_model( model, optimizer, X_train, X_test, y_test, batch_size=batch_size ) st.pyplot(plot_loss(history)) elif choice == "RMSProp": model = create_model() optimizer = RMSprop(learning_rate=lr, rho=rho) history = fit_model( model, optimizer, X_train, X_test, y_test, batch_size=batch_size ) st.pyplot(plot_loss(history)) elif choice == "Adam": model = create_model() optimizer = Adam(learning_rate=lr, beta_1=beta1, beta_2=beta2) history = fit_model( model, optimizer, X_train, X_test, y_test, batch_size=batch_size ) st.pyplot(plot_loss(history)) st.write("The dataset can be viewed below:") st.dataframe(data=df, width=1000, height=200)