gcvit-tf / README.md
awsaf49's picture
Update README.md
e045a96
---
title: 'GCViT: Global Context Vision Transformer'
colorFrom: indigo
sdk: gradio
sdk_version: 3.0.15
emoji: πŸš€
pinned: false
license: apache-2.0
app_file: app.py
---
<h1 align="center">
<p><a href='https://arxiv.org/pdf/2206.09959v1.pdf'>GCViT: Global Context Vision Transformer</a></p>
</h1>
<div align=center><img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/lvg_arch.PNG" width=800></div>
<p align="center">
<a href="https://github.com/awsaf49/gcvit-tf/blob/main/LICENSE.md">
<img src="https://img.shields.io/badge/License-MIT-yellow.svg">
</a>
<img alt="python" src="https://img.shields.io/badge/python-%3E%3D3.6-blue?logo=python">
<img alt="tensorflow" src="https://img.shields.io/badge/tensorflow-%3E%3D2.4.1-orange?logo=tensorflow">
<div align=center><p>
<a target="_blank" href="https://huggingface.co/spaces/awsaf49/gcvit-tf"><img src="https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Spaces-yellow.svg"></a>
<a href="https://colab.research.google.com/github/awsaf49/gcvit-tf/blob/main/notebooks/GCViT_Flower_Classification.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
<a href="https://www.kaggle.com/awsaf49/flower-classification-gcvit-global-context-vit"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</p></div>
<h2 align="center">
<p>Tensorflow 2.0 Implementation of GCViT</p>
</h2>
</p>
<p align="center">
This library implements <b>GCViT</b> using Tensorflow 2.0 specifically in <code>tf.keras.Model</code> manner to get PyTorch flavor.
</p>
## Update
* **15 Jan 2023** : `GCViTLarge` model added with ckpt.
* **3 Sept 2022** : Annotated [kaggle-notebook](https://www.kaggle.com/code/awsaf49/gcvit-global-context-vision-transformer) based on this project won [Kaggle ML Research Spotlight: August 2022](https://www.kaggle.com/discussions/general/349817).
* **19 Aug 2022** : This project got acknowledged by [Official](https://github.com/NVlabs/GCVit) repo [here](https://github.com/NVlabs/GCVit#third-party-implementations-and-resources)
## Model
* Architecture:
<img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/arch.PNG">
* Local Vs Global Attention:
<img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/lvg_msa.PNG">
## Result
<img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/result.PNG" width=900>
Official codebase had some issue which has been fixed recently (12 August 2022). Here's the result of ported weights on **ImageNetV2-Test** data,
| Model | Acc@1 | Acc@5 | #Params |
|--------------|-------|-------|---------|
| GCViT-XXTiny | 0.663 | 0.873 | 12M |
| GCViT-XTiny | 0.685 | 0.885 | 20M |
| GCViT-Tiny | 0.708 | 0.899 | 28M |
| GCViT-Small | 0.720 | 0.901 | 51M |
| GCViT-Base | 0.731 | 0.907 | 90M |
| GCViT-Large | 0.734 | 0.913 | 202M |
## Installation
```bash
pip install -U gcvit
# or
# pip install -U git+https://github.com/awsaf49/gcvit-tf
```
## Usage
Load model using following codes,
```py
from gcvit import GCViTTiny
model = GCViTTiny(pretrain=True)
```
Simple code to check model's prediction,
```py
from skimage.data import chelsea
img = tf.keras.applications.imagenet_utils.preprocess_input(chelsea(), mode='torch') # Chelsea the cat
img = tf.image.resize(img, (224, 224))[None,] # resize & create batch
pred = model(img).numpy()
print(tf.keras.applications.imagenet_utils.decode_predictions(pred)[0])
```
Prediction:
```py
[('n02124075', 'Egyptian_cat', 0.9194835),
('n02123045', 'tabby', 0.009686623),
('n02123159', 'tiger_cat', 0.0061576385),
('n02127052', 'lynx', 0.0011503297),
('n02883205', 'bow_tie', 0.00042479983)]
```
For feature extraction:
```py
model = GCViTTiny(pretrain=True) # when pretrain=True, num_classes must be 1000
model.reset_classifier(num_classes=0, head_act=None)
feature = model(img)
print(feature.shape)
```
Feature:
```py
(None, 512)
```
For feature map:
```py
model = GCViTTiny(pretrain=True) # when pretrain=True, num_classes must be 1000
feature = model.forward_features(img)
print(feature.shape)
```
Feature map:
```py
(None, 7, 7, 512)
```
## Live-Demo
* For live demo on Image Classification & Grad-CAM, with **ImageNet** weights, click <a target="_blank" href="https://huggingface.co/spaces/awsaf49/gcvit-tf"><img src="https://img.shields.io/badge/Try%20on-Gradio-orange"></a> powered by πŸ€— Space and Gradio. here's an example,
<a href="https://huggingface.co/spaces/awsaf49/gcvit-tf"><img src="image/gradio_demo.JPG" height=500></a>
## Example
For working training example checkout these notebooks on **Google Colab** <a href="https://colab.research.google.com/github/awsaf49/gcvit-tf/blob/main/notebooks/GCViT_Flower_Classification.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> & **Kaggle** <a href="https://www.kaggle.com/awsaf49/flower-classification-gcvit-global-context-vit"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>.
Here is grad-cam result after training on Flower Classification Dataset,
<img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/flower_gradcam.PNG" height=500>
## To Do
- [ ] Segmentation Pipeline
- [x] New updated weights have been added.
- [x] Working training example in Colab & Kaggle.
- [x] GradCAM showcase.
- [x] Gradio Demo.
- [x] Build model with `tf.keras.Model`.
- [x] Port weights from official repo.
- [x] Support for `TPU`.
## Acknowledgement
* [GCVit](https://github.com/NVlabs/GCVit) (Official)
* [Swin-Transformer-TF](https://github.com/rishigami/Swin-Transformer-TF)
* [tfgcvit](https://github.com/shkarupa-alex/tfgcvit/tree/develop/tfgcvit)
* [keras_cv_attention_models](https://github.com/leondgarse/keras_cv_attention_model)
## Citation
```bibtex
@article{hatamizadeh2022global,
title={Global Context Vision Transformers},
author={Hatamizadeh, Ali and Yin, Hongxu and Kautz, Jan and Molchanov, Pavlo},
journal={arXiv preprint arXiv:2206.09959},
year={2022}
}
```