ayajoharji's picture
Update app.py
73e18ce verified
#uploud neccessary libaries
import gradio as gr
from transformers import pipeline # to load a pre-trained model.
# Load the text generation pipeline
text_generator = pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B")
# function that takes in a prompt and returns generated text
def generate_text(prompt,temperature):
result = text_generator(prompt,
max_length=100,
num_return_sequences=1,
temperature=temperature,
top_k=5,
top_p=0.9
)
return result[0]['generated_text']
# Set up the Gradio interface
iface = gr.Interface(
fn=generate_text, # Function to process input
inputs=[
gr.Textbox(label="Provide a query or idea that will serve as the basis for generating text"),
gr.Slider(minimum=0.1,maximum=1.0,step=0.1,value=0.7,label="Temperature:Lower = More Focused, Higher = More Creative")
], # Input: Textbox for user to enter prompt
outputs=gr.Textbox(label="Generated Text (Based on Your Input and Temperature Setting)"), # Output: Generated text
title="Creative Text Generation",
description="Adjust the parameters to achieve your desired text output",
)
# Launch the interface
iface.launch()