Spaces:
Running
Running
import streamlit as st | |
import torch | |
import torch.nn.functional as F | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from datasets import load_dataset | |
import numpy as np | |
import pandas as pd | |
st.title('Can I Patent This?') | |
# steamlit form | |
option = st.selectbox( | |
'How would you like to be contacted?', | |
('p1', 'p2', 'p3')) | |
st.write(option) | |
form = st.form(key='sentiment-form') | |
user_input = form.text_area(label = 'Enter your text', value = "I love steamlit and hugging face!") | |
submit = form.form_submit_button('Submit') | |
model_name = "ayethuzar/tuned-for-patentability" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
test = [user_input] | |
if submit: | |
batch = tokenizer(test, padding = True, truncation = True, max_length = 512, return_tensors = "pt") | |
with torch.no_grad(): | |
outputs = model(**batch) | |
#st.write(outputs) | |
predictions = F.softmax(outputs.logits, dim = 1) | |
result = "Patentability Score: " + str(predictions.numpy()[0][1]) | |
html_str = f"""<style>p.a {{font: bold {28}px Courier;color:#1D5D9B;}}</style><p class="a">{result}</p>""" | |
st.markdown(html_str, unsafe_allow_html=True) | |