ayethuzar commited on
Commit
0f6d279
1 Parent(s): 2f59628

update milestone4doc

Browse files
Files changed (1) hide show
  1. milestone4Documentation.md +138 -61
milestone4Documentation.md CHANGED
@@ -1,61 +1,138 @@
1
- # CS 670 Project - Finetuning Language Models
2
-
3
- ************************
4
-
5
- Deliverables
6
-
7
- ************************
8
-
9
- Milestone-3 notebook: https://github.com/aye-thuzar/CS670Project/blob/main/CS670_milestone_3_AyeThuzar.ipynb
10
-
11
- Hugging Face App: https://huggingface.co/spaces/ayethuzar/can-i-patent-this
12
-
13
- Landing Page for the App: https://sites.google.com/view/cs670-finetuning-language-mode/home
14
-
15
- App Demonstration Video: [https://youtu.be/UEWUe-8fDOw](https://youtu.be/IXMJDoUqXK4)
16
-
17
- The tuned model shared to the Hugging Face Hub: https://huggingface.co/ayethuzar/tuned-for-patentability/tree/main
18
-
19
- ************************
20
-
21
- Dataset: https://github.com/suzgunmirac/hupd
22
-
23
- **Data Preprocessing**
24
-
25
- I used the load_dataset function to load all the patent applications that were filed to the USPTO in January 2016. We specify the date ranges of the training and validation sets as January 1-21, 2016 and January 22-31, 2016, respectively. This is a smaller dataset.
26
-
27
- There are two datasets: train and validation. Here are the steps I did:
28
-
29
- - Label-to-index mapping for the decision status field
30
- - map the 'abstract' and 'claims' sections and tokenize them using pretrained('distilbert-base-uncased') tokenizer
31
- - format them
32
- - use DataLoader with batch_size = 16
33
-
34
- **milestone3:**
35
-
36
- The following notebook has the tuned model. There are 6 classes in the Harvard USPTO patent dataset and I decided to encode them as follow:
37
-
38
- decision_to_str = {'REJECTED': 0, 'ACCEPTED': 1, 'PENDING': 1, 'CONT-REJECTED': 0, 'CONT-ACCEPTED': 1, 'CONT-PENDING': 1}
39
-
40
- so that I can get a patentability score between 0 and 1.
41
-
42
- I use the pertained-model 'distilbert-base-uncased' from the Hugging face hub and tune it with the smaller dataset.
43
-
44
-
45
- milestone3 notebook: https://github.com/aye-thuzar/CS670Project/blob/main/CS670_milestone_3_AyeThuzar.ipynb
46
-
47
- The tuned model shared to the Hugging Face Hub: https://huggingface.co/ayethuzar/tuned-for-patentability/tree/main
48
-
49
- I tested my shared model here: https://github.com/aye-thuzar/CS670Project/blob/main/CS670_Examples.ipynb
50
-
51
- **************
52
-
53
- References:
54
-
55
- 1. https://colab.research.google.com/drive/1_ZsI7WFTsEO0iu_0g3BLTkIkOUqPzCET?usp=sharing#scrollTo=B5wxZNhXdUK6
56
- 2. https://huggingface.co/AI-Growth-Lab/PatentSBERTa
57
- 3. https://huggingface.co/anferico/bert-for-patents
58
- 4. https://huggingface.co/transformers/v3.2.0/custom_datasets.html
59
- 5. https://colab.research.google.com/drive/1TzDDCDt368cUErH86Zc_P2aw9bXaaZy1?usp=sharing
60
- 6. https://huggingface.co/docs/transformers/model_sharing
61
- 7. https://docs.streamlit.io/library/api-reference/widgets/st.file_uploader
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": []
7
+ },
8
+ "kernelspec": {
9
+ "name": "python3",
10
+ "display_name": "Python 3"
11
+ },
12
+ "language_info": {
13
+ "name": "python"
14
+ }
15
+ },
16
+ "cells": [
17
+ {
18
+ "cell_type": "markdown",
19
+ "source": [
20
+ "# CS 670 Project - Finetuning Language Models"
21
+ ],
22
+ "metadata": {
23
+ "id": "plgYaqGbr0LM"
24
+ }
25
+ },
26
+ {
27
+ "cell_type": "markdown",
28
+ "source": [
29
+ "************************\n",
30
+ "\n",
31
+ "Deliverables\n",
32
+ "\n",
33
+ "************************\n",
34
+ "\n",
35
+ "Milestone-3 notebook: https://github.com/aye-thuzar/CS670Project/blob/main/CS670_milestone_3_AyeThuzar.ipynb\n",
36
+ "\n",
37
+ "Hugging Face App: https://huggingface.co/spaces/ayethuzar/can-i-patent-this\n",
38
+ "\n",
39
+ "Landing Page for the App: https://sites.google.com/view/cs670-finetuning-language-mode/home\n",
40
+ "\n",
41
+ "App Demonstration Video: [https://youtu.be/UEWUe-8fDOw](https://youtu.be/IXMJDoUqXK4)\n",
42
+ "\n",
43
+ "The tuned model shared to the Hugging Face Hub: https://huggingface.co/ayethuzar/tuned-for-patentability/tree/main\n",
44
+ "\n",
45
+ "************************\n"
46
+ ],
47
+ "metadata": {
48
+ "id": "GIL5rFb4r5dc"
49
+ }
50
+ },
51
+ {
52
+ "cell_type": "markdown",
53
+ "source": [
54
+ "Dataset: https://github.com/suzgunmirac/hupd"
55
+ ],
56
+ "metadata": {
57
+ "id": "oAdWeGdcr8_T"
58
+ }
59
+ },
60
+ {
61
+ "cell_type": "markdown",
62
+ "source": [
63
+ "**Data Preprocessing**\n",
64
+ "\n",
65
+ " I used the load_dataset function to load all the patent applications that were filed to the USPTO in January 2016. We specify the date ranges of the training and validation sets as January 1-21, 2016 and January 22-31, 2016, respectively. This is a smaller dataset.\n",
66
+ "\n",
67
+ " There are two datasets: train and validation. Here are the steps I did:\n",
68
+ "\n",
69
+ " - Label-to-index mapping for the decision status field\n",
70
+ " - map the 'abstract' and 'claims' sections and tokenize them using pretrained('distilbert-base-uncased') tokenizer\n",
71
+ " - format them\n",
72
+ " - use DataLoader with batch_size = 16"
73
+ ],
74
+ "metadata": {
75
+ "id": "DwKVDJSWr_Tc"
76
+ }
77
+ },
78
+ {
79
+ "cell_type": "markdown",
80
+ "source": [
81
+ "**milestone 3:**\n",
82
+ "\n",
83
+ "The following notebook has the tuned model. There are 6 classes in the Harvard USPTO patent dataset and I decided to encode them as follow:\n",
84
+ "\n",
85
+ "decision_to_str = {'REJECTED': 0, 'ACCEPTED': 1, 'PENDING': 1, 'CONT-REJECTED': 0, 'CONT-ACCEPTED': 1, 'CONT-PENDING': 1}\n",
86
+ "\n",
87
+ "so that I can get a patentability score between 0 and 1.\n",
88
+ "\n",
89
+ "I use the pertained-model 'distilbert-base-uncased' from the Hugging face hub and tune it with the smaller dataset.\n",
90
+ "\n",
91
+ "My tuned model's performance is not good but I ran out of time. =(\n",
92
+ "\n",
93
+ "milestone3 notebook: https://github.com/aye-thuzar/CS670Project/blob/main/CS670_milestone_3_AyeThuzar.ipynb\n",
94
+ "\n",
95
+ "The tuned model shared to the Hugging Face Hub: https://huggingface.co/ayethuzar/tuned-for-patentability/tree/main\n",
96
+ "\n",
97
+ "I tested my shared model here: https://github.com/aye-thuzar/CS670Project/blob/main/CS670_Examples.ipynb"
98
+ ],
99
+ "metadata": {
100
+ "id": "TCLsgp79sBnG"
101
+ }
102
+ },
103
+ {
104
+ "cell_type": "markdown",
105
+ "source": [
106
+ "**milestone 4**\n",
107
+ "\n",
108
+ "This is the landing page for milestone 4 : https://sites.google.com/view/cs670-finetuning-language-mode/home\n",
109
+ "\n",
110
+ "The documentation for milestone 4: https://github.com/aye-thuzar/CS670Project/blob/main/milestone4Documentation.md\n",
111
+ "\n",
112
+ "I did not get a chance to fix my video, so it only has the model before I tuned it. After my tuned it, my model is only showing a patentabiilty score no matter which texts, I put for abstract and claims. =("
113
+ ],
114
+ "metadata": {
115
+ "id": "O9Y9HKhZ5-09"
116
+ }
117
+ },
118
+ {
119
+ "cell_type": "markdown",
120
+ "source": [
121
+ "**************\n",
122
+ "\n",
123
+ "References:\n",
124
+ "\n",
125
+ "1. https://colab.research.google.com/drive/1_ZsI7WFTsEO0iu_0g3BLTkIkOUqPzCET?usp=sharing#scrollTo=B5wxZNhXdUK6\n",
126
+ "2. https://huggingface.co/AI-Growth-Lab/PatentSBERTa\n",
127
+ "3. https://huggingface.co/anferico/bert-for-patents\n",
128
+ "4. https://huggingface.co/transformers/v3.2.0/custom_datasets.html\n",
129
+ "5. https://colab.research.google.com/drive/1TzDDCDt368cUErH86Zc_P2aw9bXaaZy1?usp=sharing\n",
130
+ "6. https://huggingface.co/docs/transformers/model_sharing\n",
131
+ "7. https://docs.streamlit.io/library/api-reference/widgets/st.file_uploader"
132
+ ],
133
+ "metadata": {
134
+ "id": "VXhpu-LosEKk"
135
+ }
136
+ }
137
+ ]
138
+ }