import streamlit as st import torch import torch.nn.functional as F import transformers from transformers import AutoTokenizer, AutoModelForSequenceClassification from datasets import load_dataset import numpy as np import pandas as pd st.title('Can I Patent This?') # steamlit form option = st.selectbox( 'Which patent file would you like to test?', ('p1', 'p2', 'p3')) st.write(option) form = st.form(key='sentiment-form') user_input = form.text_area(label = 'Enter your text', value = "I love steamlit and hugging face!") submit = form.form_submit_button('Submit') model_name = "ayethuzar/tuned-for-patentability" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) test = [user_input] if submit: batch = tokenizer(test, padding = True, truncation = True, max_length = 512, return_tensors = "pt") with torch.no_grad(): outputs = model(**batch) #st.write(outputs) predictions = F.softmax(outputs.logits, dim = 1) result = "Patentability Score: " + str(predictions.numpy()[0][1]) html_str = f"""

{result}

""" st.markdown(html_str, unsafe_allow_html=True)