ChatLM / app.py
ayoolaolafenwa's picture
Update app.py
6382988
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
import time
import numpy as np
from torch.nn import functional as F
import os
from threading import Thread
model_path = "ayoolaolafenwa/ChatLM"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map = "auto", torch_dtype=torch.bfloat16, load_in_8bit=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def user(message, history):
# Append the user's message to the conversation history
return "", history + [[message, ""]]
def chat(curr_system_message, history):
# Initialize a StopOnTokens object
stop = StopOnTokens()
# Construct the input message string for the model by concatenating the current system message and conversation history
messages = curr_system_message + \
"".join(["".join(["<user>: "+item[0], "<chatbot>: "+item[1]])
for item in history])
# Tokenize the messages string
tokens = tokenizer([messages], return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(
tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
token_ids = tokens.input_ids
attention_mask=tokens.attention_mask
generate_kwargs = dict(
input_ids=token_ids,
attention_mask = attention_mask,
streamer = streamer,
max_length=2048,
do_sample=True,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
temperature = 0.5,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
#Initialize an empty string to store the generated text
partial_text = ""
for new_text in streamer:
# print(new_text)
partial_text += new_text
history[-1][1] = partial_text
# Yield an empty string to cleanup the message textbox and the updated conversation history
yield history
return partial_text
with gr.Blocks() as demo:
# history = gr.State([])
with gr.Row():
with gr.Column():
gr.Markdown(
"""
ChatLM is a chat Large Language model finetuned with pretrained [Falcon-1B model](https://huggingface.co/tiiuae/falcon-rw-1b).
It was trained on a dataset containing normal day to day human conversations, due to limited data used in training it will not generalize well for tasks like coding, current affairs and hallucinations may occur.
"""
)
gr.Markdown(""" # Github Repo
https://github.com/ayoolaolafenwa/ChatLM/tree/main """)
chatbot = gr.Chatbot().style(height=400)
with gr.Row():
with gr.Column():
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box",
show_label=False).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Run")
stop = gr.Button("Stop")
clear = gr.Button("Clear")
system_msg = gr.Textbox(
label="Response Message", interactive=False, visible=False)
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
stop.click(fn=None, inputs=None, outputs=None, cancels=[
submit_event, submit_click_event], queue=False)
clear.click(lambda: None, None, [chatbot], queue=False)
demo.queue(max_size=32, concurrency_count=2)
demo.launch()