Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
import time | |
import numpy as np | |
from torch.nn import functional as F | |
import os | |
from threading import Thread | |
model_path = "ayoolaolafenwa/ChatLM" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map = "auto", torch_dtype=torch.bfloat16, load_in_8bit=True) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def user(message, history): | |
# Append the user's message to the conversation history | |
return "", history + [[message, ""]] | |
def chat(curr_system_message, history): | |
# Initialize a StopOnTokens object | |
stop = StopOnTokens() | |
# Construct the input message string for the model by concatenating the current system message and conversation history | |
messages = curr_system_message + \ | |
"".join(["".join(["<user>: "+item[0], "<chatbot>: "+item[1]]) | |
for item in history]) | |
# Tokenize the messages string | |
tokens = tokenizer([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
token_ids = tokens.input_ids | |
attention_mask=tokens.attention_mask | |
generate_kwargs = dict( | |
input_ids=token_ids, | |
attention_mask = attention_mask, | |
streamer = streamer, | |
max_length=2048, | |
do_sample=True, | |
num_return_sequences=1, | |
eos_token_id=tokenizer.eos_token_id, | |
temperature = 0.5, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
#Initialize an empty string to store the generated text | |
partial_text = "" | |
for new_text in streamer: | |
# print(new_text) | |
partial_text += new_text | |
history[-1][1] = partial_text | |
# Yield an empty string to cleanup the message textbox and the updated conversation history | |
yield history | |
return partial_text | |
with gr.Blocks() as demo: | |
# history = gr.State([]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
ChatLM is a chat Large Language model finetuned with pretrained [Falcon-1B model](https://huggingface.co/tiiuae/falcon-rw-1b). | |
It was trained on a dataset containing normal day to day human conversations, due to limited data used in training it will not generalize well for tasks like coding, current affairs and hallucinations may occur. | |
""" | |
) | |
gr.Markdown(""" # Github Repo | |
https://github.com/ayoolaolafenwa/ChatLM/tree/main """) | |
chatbot = gr.Chatbot().style(height=400) | |
with gr.Row(): | |
with gr.Column(): | |
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box", | |
show_label=False).style(container=False) | |
with gr.Column(): | |
with gr.Row(): | |
submit = gr.Button("Run") | |
stop = gr.Button("Stop") | |
clear = gr.Button("Clear") | |
system_msg = gr.Textbox( | |
label="Response Message", interactive=False, visible=False) | |
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( | |
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) | |
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( | |
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) | |
stop.click(fn=None, inputs=None, outputs=None, cancels=[ | |
submit_event, submit_click_event], queue=False) | |
clear.click(lambda: None, None, [chatbot], queue=False) | |
demo.queue(max_size=32, concurrency_count=2) | |
demo.launch() |