Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,62 @@
|
|
|
|
1 |
import torch
|
2 |
from peft import AutoPeftModelForCausalLM
|
3 |
from transformers import AutoTokenizer, TextStreamer
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
-
# Initialize Streamlit UI
|
7 |
-
st.title("Legal Query Chatbot")
|
8 |
-
st.write("Ask questions related to Indian traffic laws and get AI-generated responses.")
|
9 |
|
10 |
# Load LoRA fine-tuned model and tokenizer
|
11 |
-
model_path = "lora_model"
|
12 |
-
load_in_4bit = True
|
13 |
|
14 |
# Load the model
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Load tokenizer
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
model.eval()
|
27 |
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
messages = [{"role": "user", "content": user_input}]
|
34 |
-
|
35 |
-
# Tokenize input
|
36 |
inputs = tokenizer.apply_chat_template(
|
37 |
messages,
|
38 |
tokenize=True,
|
39 |
add_generation_prompt=True,
|
40 |
return_tensors="pt"
|
41 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
text_streamer
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import torch
|
3 |
from peft import AutoPeftModelForCausalLM
|
4 |
from transformers import AutoTokenizer, TextStreamer
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load LoRA fine-tuned model and tokenizer
|
7 |
+
model_path = "lora_model" # Your model folder path
|
8 |
+
load_in_4bit = True # Whether to load in 4-bit precision
|
9 |
|
10 |
# Load the model
|
11 |
+
@st.cache_resource
|
12 |
+
def load_model():
|
13 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
14 |
+
model_path,
|
15 |
+
torch_dtype=torch.float16 if not load_in_4bit else torch.float32,
|
16 |
+
load_in_4bit=load_in_4bit,
|
17 |
+
device_map="auto"
|
18 |
+
)
|
19 |
+
model.eval()
|
20 |
+
return model
|
21 |
|
22 |
# Load tokenizer
|
23 |
+
@st.cache_resource
|
24 |
+
def load_tokenizer():
|
25 |
+
return AutoTokenizer.from_pretrained(model_path)
|
|
|
26 |
|
27 |
+
model = load_model()
|
28 |
+
tokenizer = load_tokenizer()
|
29 |
|
30 |
+
def generate_response(question):
|
31 |
+
messages = [{"role": "user", "content": question}]
|
|
|
|
|
|
|
32 |
inputs = tokenizer.apply_chat_template(
|
33 |
messages,
|
34 |
tokenize=True,
|
35 |
add_generation_prompt=True,
|
36 |
return_tensors="pt"
|
37 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
|
39 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
40 |
+
output = model.generate(
|
41 |
+
input_ids=inputs,
|
42 |
+
streamer=text_streamer,
|
43 |
+
max_new_tokens=1048,
|
44 |
+
use_cache=True,
|
45 |
+
temperature=0.7,
|
46 |
+
min_p=0.1
|
47 |
+
)
|
48 |
+
|
49 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
50 |
+
|
51 |
+
# Streamlit UI
|
52 |
+
st.title("Indian Penal Code AI Assistant")
|
53 |
+
|
54 |
+
question = st.text_area("Ask a legal question:")
|
55 |
+
if st.button("Generate Response"):
|
56 |
+
if question.strip():
|
57 |
+
with st.spinner("Generating response..."):
|
58 |
+
answer = generate_response(question)
|
59 |
+
st.subheader("Answer:")
|
60 |
+
st.write(answer)
|
61 |
+
else:
|
62 |
+
st.warning("Please enter a question.")
|