File size: 18,389 Bytes
7138195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# -*- coding: utf-8 -*-
"""Yet another copy of Final CNN Pose Notebook.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1IdEBDyEyKQdRRT9R-GkfrJINmHdf3_pF
"""

# from google.colab import drive
# drive.mount('/content/drive')

# pip install gradio

import gradio as gr



import torch
from torch.utils.data import DataLoader, Dataset, random_split
from torchvision import transforms, utils
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from PIL import Image
import os
import numpy as np
import json
import matplotlib.pyplot as plt
from torch.utils.data.dataloader import default_collate

# Define the dataset class
class HumanPoseDataset(Dataset):
    def __init__(self, annotations, img_dir, transform=None):
        self.annotations = annotations
        self.img_dir = img_dir
        self.transform = transform

    def __len__(self):
        return len(self.annotations)

    def __getitem__(self, idx):
        img_key = list(self.annotations.keys())[idx]
        annotation_list = self.annotations[img_key]
        # Skip the image if there are no annotations
        if not annotation_list:
            return None
        # Use the first annotation for simplicity
        annotation = annotation_list[0]
        if not annotation['landmarks']:  # Check if landmarks are not empty
            return None
        img_name = os.path.join(self.img_dir, annotation['file'])
        image = Image.open(img_name).convert('RGB')
        original_image_size = image.size
        keypoints = annotation['landmarks']
        keypoints_array = np.array([[k['x'], k['y'], k['z'], k['visibility']] for k in keypoints])

        if self.transform:
            image = self.transform(image)

        sample = {'image': image, 'keypoints': keypoints_array, 'original_image_size': original_image_size}
        print(sample)
        return sample

# Custom collate function to filter out None values
def custom_collate(batch):
    batch = [b for b in batch if b is not None]
    return default_collate(batch)

# Load the annotations JSON into a dictionary
annotations_path = '/content/drive/MyDrive/annotations_CNN (3).json'  # Update this path
with open(annotations_path) as f:
    annotations_data = json.load(f)
print("Annotations data loaded. Number of images:", len(annotations_data))

x = annotations_data.keys()

"""# Do data preprocessing. For example, resize to 32 by 32 and normalization.

"""

img_dir = '/content/drive/MyDrive/CNN_Dataset'

# Define the transformations with resizing and augmentation
transform = transforms.Compose([
    transforms.Resize((32, 32)),  # Resize the images to 256x256
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    transforms.RandomHorizontalFlip(),  # Example augmentation
    # Add more augmentations if needed
])

test_transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Resize((32,32)),
])

# Create the dataset
human_pose_dataset = HumanPoseDataset(annotations_data, img_dir, transform=transform)
testing_pose_dataset = HumanPoseDataset(annotations_data, img_dir, transform=test_transform)

print("Dataset created. Length of dataset:", len(human_pose_dataset))

sorted(x) == sorted(os.listdir('/content/drive/MyDrive/CNN_Dataset'))

"""#2. Load parameters of a pretrained model. If a pretrained model for the entire network is not available, then load parameters for the backbone network/feature extraction network/encoder.

Pose net model is not available so we will be using an architecture similar to PoseNet, a human pose detection CNN architecture. In the above architecture, we are given a brief description about the PoseNet Architecture. We will be using the Regression Network to find the keypoint coordinates.
"""

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.conv4 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        # Assuming the input image size is 256x256, after four pooling layers the image size will be 16x16
        self.fc1 = nn.Linear(2 * 16 * 16, 1000)
        self.fc2 = nn.Linear(1000, 33 * 4)  # Assuming 33 keypoints

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        x = self.pool(F.relu(self.conv4(x)))
        x = torch.flatten(x, 1)  # Flatten the tensor for the fully connected layer
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# Initialize the model
model = SimpleCNN()
print("Model initialized.")
print(model)  # Print the model architecture

#!pip install mediapipe

"""#3 Replace the output layer if necessary and finetune the network for your dataset. Use validation dataset to pick a good learning rate and momentum.

1. Training for a very less samples
"""

# Split the dataset into training, validation, and test sets
train_size = int(0.04* len(human_pose_dataset))
validation_size = int(0.1 * len(human_pose_dataset))
test_size = len(human_pose_dataset) - train_size - validation_size
train_dataset, remaining_dataset = random_split(human_pose_dataset, [train_size, validation_size + test_size])
validation_dataset, test_dataset = random_split(remaining_dataset, [validation_size, test_size])

test_pose_dataset , remaining_data = random_split(testing_pose_dataset,[6,194])

# Define the batch size
batch_size = 8

# Create data loaders for each set with the custom collate function
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=custom_collate)
validation_loader = DataLoader(validation_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)

test_image_loader = DataLoader(test_pose_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)

print("Data loaders created.")

len(train_dataset)



# Loss function
criterion = nn.MSELoss()

# Optimizer
optimizer = optim.Adam(model.parameters(), lr=1e-4)

# Convert the model parameters to float
model = model.float()

# Ensure that the tensors are also floats
sample_batch = next(iter(train_loader))
#import mediapipe as mp
images = sample_batch['image'].float()  # Convert images to float
keypoints = sample_batch['keypoints'].view(-1, 132).float()  # Convert keypoints to float and reshape

# Now proceed with the optimization loop
loss=0
for epochs in range(10):
  optimizer.zero_grad()
  outputs = model(images)
  loss = criterion(outputs, keypoints)
  loss.backward()
  optimizer.step()
  print("Optimization step completed.")
  print(loss.item())
  loss=loss.item()

import torch

def calculate_accuracy(outputs, targets):
      accuracy = torch.mean(torch.abs(outputs - targets))
      return accuracy

print(outputs.shape)
# Calculate accuracy
with torch.no_grad():
    accuracy = calculate_accuracy(outputs, keypoints)
    accuracy= 1- accuracy/132

print("Loss:", loss)
print("Accuracy:", accuracy.item()*100, '%')

"""As you can see, the accuracy is very close to 100% (Overfitting)

Now taking 80-10-10 split on the dataset, we create new train, val and test loaders
"""

# Split the dataset into training, validation, and test sets
train_size = int(0.8* len(human_pose_dataset))
validation_size = int(0.1 * len(human_pose_dataset))
test_size = len(human_pose_dataset) - train_size - validation_size
train_dataset, remaining_dataset = random_split(human_pose_dataset, [train_size, validation_size + test_size])
validation_dataset, test_dataset = random_split(remaining_dataset, [validation_size, test_size])

test_pose_dataset , remaining_data = random_split(testing_pose_dataset,[6,194])

# Define the batch size
batch_size = 8

# Create data loaders for each set with the custom collate function
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=custom_collate)
validation_loader = DataLoader(validation_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)

test_image_loader = DataLoader(test_pose_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)

print("Data loaders created.")

len(test_dataset)

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import torch.nn.functional as F

class SimpleCNN(nn.Module):

# Define hyperparameters to search over
      learning_rates = [0.001, 0.01, 0.1]
      momentums = [0.9, 0.95, 0.99]
      weight_decays = [0.0001, 0.001, 0.01]

      best_loss = float('inf')
      best_lr, best_momentum, best_weight_decay = None, None, None

      # Grid search over hyperparameters
      for lr in learning_rates:
          for momentum in momentums:
              for weight_decay in weight_decays:
                  # Initialize the model with the current set of hyperparameters
                  model = SimpleCNN()

                  # Define loss function and optimizer
                  criterion = nn.MSELoss()
                  optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)

                  # Ensure that the tensors are also floats
                  sample_batch = next(iter(train_loader))
                  images = sample_batch['image'].float()  # Convert images to float
                  keypoints = sample_batch['keypoints'].view(-1, 132).float()  # Convert keypoints to float and reshape

                  # Now proceed with the optimization loop
                  optimizer.zero_grad()
                  outputs = model(images)
                  print("Output shape after forward pass:", outputs.shape)
                  outputs = model(images)
                  loss = criterion(outputs, keypoints)
                  print("Initial loss:", loss.item())
                  loss.backward()
                  optimizer.step()
                  print("Optimization step completed.")

                  total_loss = 0
                  avg_loss = total_loss / len(train_loader)
                  model.train()

                  # Check if the current set of hyperparameters resulted in a better performance
                  if avg_loss < best_loss:
                      best_loss = avg_loss
                      best_lr, best_momentum, best_weight_decay = lr, momentum, weight_decay

      # After the grid search, choose the hyperparameters that performed the best
      print("Best Hyperparameters - lr: {}, momentum: {}, weight_decay: {}".format(
          best_lr, best_momentum, best_weight_decay))

      # Train the final model with the selected hyperparameters on the full dataset
      model = SimpleCNN()
      optimizer = optim.SGD(model.parameters(), lr=best_lr, momentum=best_momentum, weight_decay=best_weight_decay)

"""#3. Plotting Validation and Test Loss

The best parameters are:

*   Learning Rate: 0.001
*   Momentum: 0.9
*   Weight Decay: 0.0001
"""

import torch
import matplotlib.pyplot as plt

# Assuming you have already defined your model, optimizer, and criterion

# Ensure that the tensors are also floats for training
sample_batch = next(iter(train_loader))
images = sample_batch['image'].float()
keypoints = sample_batch['keypoints'].view(-1, 132).float()

# Ensure that the tensors are also floats for validation
validation_sample_batch = next(iter(validation_loader))
validation_images = validation_sample_batch['image'].float()
validation_keypoints = validation_sample_batch['keypoints'].view(-1, 132).float()

# Now proceed with the optimization loop
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.MSELoss()

train_loss = []
val_loss = []

for epoch in range(20):
    model.train()
    optimizer.zero_grad()
    outputs = model(images)
    current_loss = criterion(outputs, keypoints)
    current_loss.backward()
    optimizer.step()

    model.eval()  # Switch to evaluation mode for validation
    with torch.no_grad():
        # Calculate validation loss
        val_outputs = model(validation_images)
        val_current_loss = criterion(val_outputs, validation_keypoints)

    print(f"Epoch [{epoch + 1}/100], Loss: {current_loss.item():.4f}, Val Loss: {val_current_loss.item():.4f}")
    train_loss.append(current_loss.item())
    val_loss.append(val_current_loss.item())

plotting_val_loss = val_loss
plotting_train_loss = train_loss

import matplotlib.pyplot as plt
# Plotting

plt.figure(figsize=(8, 4))

plt.plot( plotting_train_loss, marker='o', linestyle='-', color='b',label='train loss')
plt.plot( plotting_val_loss, marker='o', linestyle= '-', color='r', label='val loss')

plt.title('Loss vs Epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.grid(True)
plt.legend()

# Show the legend in a small box
plt.legend(loc='upper right')

plt.show()

"""#4. Final Run on Test Dataset"""

# Ensure that the tensors are also floats
sample_batch = next(iter(test_loader))
#import mediapipe as mp
test_images = sample_batch['image'].float()  # Convert images to float
test_keypoints = sample_batch['keypoints'].view(-1, 132).float()  # Convert keypoints to float and reshape

model.eval()

optimizer.zero_grad()
outputs = model(test_images)

print("Testing Done")

test_images.shape

test_actual_plot = test_keypoints.reshape(len(test_images),33,4)[0]

test_predict_plot = outputs.reshape(len(test_images),33,4)[0]

test_predict_plot.shape

"""# 4. Finally, evaluate on the test dataset."""

import cv2

import matplotlib.pyplot as plt
import numpy as np

def plot_human_pose(keypoints):
    # Create a figure and axis
    fig, ax = plt.subplots()

    # Plot keypoints
    for i in range(len(keypoints)):
        x, y, _, _ = keypoints[i]
        ax.scatter(x, -y, color='blue')  # Invert y-axis

    # Connect body parts
    connect_lines = [(0, 2), (2, 7),   # Left eye
                     (0, 5), (5, 8),   # Right eye
                     (9,10),  # Left side
                     (11, 12), (12, 24), (11, 23),  # Right side
                     (24,23), (24,26), (23,25),  # Connect ears and wrists
                     (26, 28), (25, 27),
                     (28, 30), (28, 32), (30,32),# Connect left and right pinky fingers
                     (27, 29), (27, 31), (31,29),  # Connect left and right index fingers
                     (12, 14), (11, 13),  # Connect left and right thumbs
                     (14, 16), (13, 15),  # Connect left and right hips
                     (16, 18), (18, 20), (16,20), (16,22),  # Connect left and right knees
                     (15, 17), (15, 19),  # Connect left and right ankles
                     (17, 19), (15, 21)]  # Connect left and right heels

    for line in connect_lines:
        start, end = line
        x_vals = [keypoints[start][0], keypoints[end][0]]
        y_vals = [-keypoints[start][1], -keypoints[end][1]]  # Invert y-axis
        ax.plot(x_vals, y_vals, linewidth=2, color='red')

    ax.set_aspect('equal', adjustable='datalim')
    plt.title('Actual Pose')
    plt.axis('off')
    plt.show()

# Example usage:
keypoints = test_actual_plot  # Replace with your 33 key points
plot_human_pose(keypoints)

def plot_human_pose(keypoints):
    # Create a figure and axis
    fig, ax = plt.subplots()

    # Plot keypoints
    for i in range(len(keypoints)):
        x, y, _, _ = keypoints[i]
        ax.scatter(x, -y, color='blue')  # Invert y-axis

    # Connect body parts
    connect_lines = [(0, 2), (2, 7),   # Left eye
                     (0, 5), (5, 8),   # Right eye
                     (9,10),  # Left side
                     (11, 12), (12, 24), (11, 23),  # Right side
                     (24,23), (24,26), (23,25),  # Connect ears and wrists
                     (26, 28), (25, 27),
                     (28, 30), (28, 32), (30,32),# Connect left and right pinky fingers
                     (27, 29), (27, 31), (31,29),  # Connect left and right index fingers
                     (12, 14), (11, 13),  # Connect left and right thumbs
                     (14, 16), (13, 15),  # Connect left and right hips
                     (16, 18), (18, 20), (16,20), (16,22),  # Connect left and right knees
                     (15, 17), (15, 19),  # Connect left and right ankles
                     (17, 19), (15, 21)]  # Connect left and right heels

    for line in connect_lines:
        start, end = line
        x_vals = [keypoints[start][0], keypoints[end][0]]
        y_vals = [-keypoints[start][1], -keypoints[end][1]]  # Invert y-axis
        ax.plot(x_vals, y_vals, linewidth=2, color='green')

    ax.set_aspect('equal', adjustable='datalim')
    plt.title('Predicted Pose')
    plt.axis('off')
    plt.show()

# Example usage:
keypoints = test_predict_plot.detach().numpy() # Replace with your 33 key points
plot_human_pose(keypoints)

"""### As you can see, the model predicts the pose of the person very accurately as depicted by its train and validation accuracy"""

# torch.save(model.state_dict(), '/content/drive/MyDrive/Ayush sarangi/model.pth')
torch.save( model, '/content/drive/MyDrive/Ayush sarangi/entire_model.pt')

import cv2

# test_image = cv2.imread('/content/drive/MyDrive/CNN_Dataset/02e442be-aec7-4f7c-93a7-e4246d0e1f93.JPG')
# # test_image = cv2.resize(test_image, (32,32))
# # test_image.shape

def predict_pose(test_image):
  img = cv2.resize(test_image, (32,32))
  convert_tensor = transforms.ToTensor()
  tensor_img = convert_tensor(img)
  tensor_img = tensor_img[None,:,:,:]
  model.eval()

  optimizer.zero_grad()
  outputs = model(tensor_img)

  pred_keypoints = outputs.reshape(1,33,4)[0]
  pred_keypoints = pred_keypoints.detach().numpy()

  return plot_human_pose(pred_keypoints)

predict_pose(test_image)

pose_detector = gr.Interface(fn = predict_pose, inputs = gr.Image(type = 'pil'), label = "Image" )

pose_detector.launch()