pose_detector_3 / app.py
ayush2003's picture
initial commit
7138195
raw
history blame
18.4 kB
# -*- coding: utf-8 -*-
"""Yet another copy of Final CNN Pose Notebook.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1IdEBDyEyKQdRRT9R-GkfrJINmHdf3_pF
"""
# from google.colab import drive
# drive.mount('/content/drive')
# pip install gradio
import gradio as gr
import torch
from torch.utils.data import DataLoader, Dataset, random_split
from torchvision import transforms, utils
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from PIL import Image
import os
import numpy as np
import json
import matplotlib.pyplot as plt
from torch.utils.data.dataloader import default_collate
# Define the dataset class
class HumanPoseDataset(Dataset):
def __init__(self, annotations, img_dir, transform=None):
self.annotations = annotations
self.img_dir = img_dir
self.transform = transform
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
img_key = list(self.annotations.keys())[idx]
annotation_list = self.annotations[img_key]
# Skip the image if there are no annotations
if not annotation_list:
return None
# Use the first annotation for simplicity
annotation = annotation_list[0]
if not annotation['landmarks']: # Check if landmarks are not empty
return None
img_name = os.path.join(self.img_dir, annotation['file'])
image = Image.open(img_name).convert('RGB')
original_image_size = image.size
keypoints = annotation['landmarks']
keypoints_array = np.array([[k['x'], k['y'], k['z'], k['visibility']] for k in keypoints])
if self.transform:
image = self.transform(image)
sample = {'image': image, 'keypoints': keypoints_array, 'original_image_size': original_image_size}
print(sample)
return sample
# Custom collate function to filter out None values
def custom_collate(batch):
batch = [b for b in batch if b is not None]
return default_collate(batch)
# Load the annotations JSON into a dictionary
annotations_path = '/content/drive/MyDrive/annotations_CNN (3).json' # Update this path
with open(annotations_path) as f:
annotations_data = json.load(f)
print("Annotations data loaded. Number of images:", len(annotations_data))
x = annotations_data.keys()
"""# Do data preprocessing. For example, resize to 32 by 32 and normalization.
"""
img_dir = '/content/drive/MyDrive/CNN_Dataset'
# Define the transformations with resizing and augmentation
transform = transforms.Compose([
transforms.Resize((32, 32)), # Resize the images to 256x256
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.RandomHorizontalFlip(), # Example augmentation
# Add more augmentations if needed
])
test_transform=transforms.Compose([
transforms.ToTensor(),
transforms.Resize((32,32)),
])
# Create the dataset
human_pose_dataset = HumanPoseDataset(annotations_data, img_dir, transform=transform)
testing_pose_dataset = HumanPoseDataset(annotations_data, img_dir, transform=test_transform)
print("Dataset created. Length of dataset:", len(human_pose_dataset))
sorted(x) == sorted(os.listdir('/content/drive/MyDrive/CNN_Dataset'))
"""#2. Load parameters of a pretrained model. If a pretrained model for the entire network is not available, then load parameters for the backbone network/feature extraction network/encoder.
Pose net model is not available so we will be using an architecture similar to PoseNet, a human pose detection CNN architecture. In the above architecture, we are given a brief description about the PoseNet Architecture. We will be using the Regression Network to find the keypoint coordinates.
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
# Assuming the input image size is 256x256, after four pooling layers the image size will be 16x16
self.fc1 = nn.Linear(2 * 16 * 16, 1000)
self.fc2 = nn.Linear(1000, 33 * 4) # Assuming 33 keypoints
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.pool(F.relu(self.conv4(x)))
x = torch.flatten(x, 1) # Flatten the tensor for the fully connected layer
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# Initialize the model
model = SimpleCNN()
print("Model initialized.")
print(model) # Print the model architecture
#!pip install mediapipe
"""#3 Replace the output layer if necessary and finetune the network for your dataset. Use validation dataset to pick a good learning rate and momentum.
1. Training for a very less samples
"""
# Split the dataset into training, validation, and test sets
train_size = int(0.04* len(human_pose_dataset))
validation_size = int(0.1 * len(human_pose_dataset))
test_size = len(human_pose_dataset) - train_size - validation_size
train_dataset, remaining_dataset = random_split(human_pose_dataset, [train_size, validation_size + test_size])
validation_dataset, test_dataset = random_split(remaining_dataset, [validation_size, test_size])
test_pose_dataset , remaining_data = random_split(testing_pose_dataset,[6,194])
# Define the batch size
batch_size = 8
# Create data loaders for each set with the custom collate function
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=custom_collate)
validation_loader = DataLoader(validation_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)
test_image_loader = DataLoader(test_pose_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)
print("Data loaders created.")
len(train_dataset)
# Loss function
criterion = nn.MSELoss()
# Optimizer
optimizer = optim.Adam(model.parameters(), lr=1e-4)
# Convert the model parameters to float
model = model.float()
# Ensure that the tensors are also floats
sample_batch = next(iter(train_loader))
#import mediapipe as mp
images = sample_batch['image'].float() # Convert images to float
keypoints = sample_batch['keypoints'].view(-1, 132).float() # Convert keypoints to float and reshape
# Now proceed with the optimization loop
loss=0
for epochs in range(10):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, keypoints)
loss.backward()
optimizer.step()
print("Optimization step completed.")
print(loss.item())
loss=loss.item()
import torch
def calculate_accuracy(outputs, targets):
accuracy = torch.mean(torch.abs(outputs - targets))
return accuracy
print(outputs.shape)
# Calculate accuracy
with torch.no_grad():
accuracy = calculate_accuracy(outputs, keypoints)
accuracy= 1- accuracy/132
print("Loss:", loss)
print("Accuracy:", accuracy.item()*100, '%')
"""As you can see, the accuracy is very close to 100% (Overfitting)
Now taking 80-10-10 split on the dataset, we create new train, val and test loaders
"""
# Split the dataset into training, validation, and test sets
train_size = int(0.8* len(human_pose_dataset))
validation_size = int(0.1 * len(human_pose_dataset))
test_size = len(human_pose_dataset) - train_size - validation_size
train_dataset, remaining_dataset = random_split(human_pose_dataset, [train_size, validation_size + test_size])
validation_dataset, test_dataset = random_split(remaining_dataset, [validation_size, test_size])
test_pose_dataset , remaining_data = random_split(testing_pose_dataset,[6,194])
# Define the batch size
batch_size = 8
# Create data loaders for each set with the custom collate function
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=custom_collate)
validation_loader = DataLoader(validation_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)
test_image_loader = DataLoader(test_pose_dataset, batch_size=batch_size, shuffle=False, collate_fn=custom_collate)
print("Data loaders created.")
len(test_dataset)
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import torch.nn.functional as F
class SimpleCNN(nn.Module):
# Define hyperparameters to search over
learning_rates = [0.001, 0.01, 0.1]
momentums = [0.9, 0.95, 0.99]
weight_decays = [0.0001, 0.001, 0.01]
best_loss = float('inf')
best_lr, best_momentum, best_weight_decay = None, None, None
# Grid search over hyperparameters
for lr in learning_rates:
for momentum in momentums:
for weight_decay in weight_decays:
# Initialize the model with the current set of hyperparameters
model = SimpleCNN()
# Define loss function and optimizer
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
# Ensure that the tensors are also floats
sample_batch = next(iter(train_loader))
images = sample_batch['image'].float() # Convert images to float
keypoints = sample_batch['keypoints'].view(-1, 132).float() # Convert keypoints to float and reshape
# Now proceed with the optimization loop
optimizer.zero_grad()
outputs = model(images)
print("Output shape after forward pass:", outputs.shape)
outputs = model(images)
loss = criterion(outputs, keypoints)
print("Initial loss:", loss.item())
loss.backward()
optimizer.step()
print("Optimization step completed.")
total_loss = 0
avg_loss = total_loss / len(train_loader)
model.train()
# Check if the current set of hyperparameters resulted in a better performance
if avg_loss < best_loss:
best_loss = avg_loss
best_lr, best_momentum, best_weight_decay = lr, momentum, weight_decay
# After the grid search, choose the hyperparameters that performed the best
print("Best Hyperparameters - lr: {}, momentum: {}, weight_decay: {}".format(
best_lr, best_momentum, best_weight_decay))
# Train the final model with the selected hyperparameters on the full dataset
model = SimpleCNN()
optimizer = optim.SGD(model.parameters(), lr=best_lr, momentum=best_momentum, weight_decay=best_weight_decay)
"""#3. Plotting Validation and Test Loss
The best parameters are:
* Learning Rate: 0.001
* Momentum: 0.9
* Weight Decay: 0.0001
"""
import torch
import matplotlib.pyplot as plt
# Assuming you have already defined your model, optimizer, and criterion
# Ensure that the tensors are also floats for training
sample_batch = next(iter(train_loader))
images = sample_batch['image'].float()
keypoints = sample_batch['keypoints'].view(-1, 132).float()
# Ensure that the tensors are also floats for validation
validation_sample_batch = next(iter(validation_loader))
validation_images = validation_sample_batch['image'].float()
validation_keypoints = validation_sample_batch['keypoints'].view(-1, 132).float()
# Now proceed with the optimization loop
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.MSELoss()
train_loss = []
val_loss = []
for epoch in range(20):
model.train()
optimizer.zero_grad()
outputs = model(images)
current_loss = criterion(outputs, keypoints)
current_loss.backward()
optimizer.step()
model.eval() # Switch to evaluation mode for validation
with torch.no_grad():
# Calculate validation loss
val_outputs = model(validation_images)
val_current_loss = criterion(val_outputs, validation_keypoints)
print(f"Epoch [{epoch + 1}/100], Loss: {current_loss.item():.4f}, Val Loss: {val_current_loss.item():.4f}")
train_loss.append(current_loss.item())
val_loss.append(val_current_loss.item())
plotting_val_loss = val_loss
plotting_train_loss = train_loss
import matplotlib.pyplot as plt
# Plotting
plt.figure(figsize=(8, 4))
plt.plot( plotting_train_loss, marker='o', linestyle='-', color='b',label='train loss')
plt.plot( plotting_val_loss, marker='o', linestyle= '-', color='r', label='val loss')
plt.title('Loss vs Epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.grid(True)
plt.legend()
# Show the legend in a small box
plt.legend(loc='upper right')
plt.show()
"""#4. Final Run on Test Dataset"""
# Ensure that the tensors are also floats
sample_batch = next(iter(test_loader))
#import mediapipe as mp
test_images = sample_batch['image'].float() # Convert images to float
test_keypoints = sample_batch['keypoints'].view(-1, 132).float() # Convert keypoints to float and reshape
model.eval()
optimizer.zero_grad()
outputs = model(test_images)
print("Testing Done")
test_images.shape
test_actual_plot = test_keypoints.reshape(len(test_images),33,4)[0]
test_predict_plot = outputs.reshape(len(test_images),33,4)[0]
test_predict_plot.shape
"""# 4. Finally, evaluate on the test dataset."""
import cv2
import matplotlib.pyplot as plt
import numpy as np
def plot_human_pose(keypoints):
# Create a figure and axis
fig, ax = plt.subplots()
# Plot keypoints
for i in range(len(keypoints)):
x, y, _, _ = keypoints[i]
ax.scatter(x, -y, color='blue') # Invert y-axis
# Connect body parts
connect_lines = [(0, 2), (2, 7), # Left eye
(0, 5), (5, 8), # Right eye
(9,10), # Left side
(11, 12), (12, 24), (11, 23), # Right side
(24,23), (24,26), (23,25), # Connect ears and wrists
(26, 28), (25, 27),
(28, 30), (28, 32), (30,32),# Connect left and right pinky fingers
(27, 29), (27, 31), (31,29), # Connect left and right index fingers
(12, 14), (11, 13), # Connect left and right thumbs
(14, 16), (13, 15), # Connect left and right hips
(16, 18), (18, 20), (16,20), (16,22), # Connect left and right knees
(15, 17), (15, 19), # Connect left and right ankles
(17, 19), (15, 21)] # Connect left and right heels
for line in connect_lines:
start, end = line
x_vals = [keypoints[start][0], keypoints[end][0]]
y_vals = [-keypoints[start][1], -keypoints[end][1]] # Invert y-axis
ax.plot(x_vals, y_vals, linewidth=2, color='red')
ax.set_aspect('equal', adjustable='datalim')
plt.title('Actual Pose')
plt.axis('off')
plt.show()
# Example usage:
keypoints = test_actual_plot # Replace with your 33 key points
plot_human_pose(keypoints)
def plot_human_pose(keypoints):
# Create a figure and axis
fig, ax = plt.subplots()
# Plot keypoints
for i in range(len(keypoints)):
x, y, _, _ = keypoints[i]
ax.scatter(x, -y, color='blue') # Invert y-axis
# Connect body parts
connect_lines = [(0, 2), (2, 7), # Left eye
(0, 5), (5, 8), # Right eye
(9,10), # Left side
(11, 12), (12, 24), (11, 23), # Right side
(24,23), (24,26), (23,25), # Connect ears and wrists
(26, 28), (25, 27),
(28, 30), (28, 32), (30,32),# Connect left and right pinky fingers
(27, 29), (27, 31), (31,29), # Connect left and right index fingers
(12, 14), (11, 13), # Connect left and right thumbs
(14, 16), (13, 15), # Connect left and right hips
(16, 18), (18, 20), (16,20), (16,22), # Connect left and right knees
(15, 17), (15, 19), # Connect left and right ankles
(17, 19), (15, 21)] # Connect left and right heels
for line in connect_lines:
start, end = line
x_vals = [keypoints[start][0], keypoints[end][0]]
y_vals = [-keypoints[start][1], -keypoints[end][1]] # Invert y-axis
ax.plot(x_vals, y_vals, linewidth=2, color='green')
ax.set_aspect('equal', adjustable='datalim')
plt.title('Predicted Pose')
plt.axis('off')
plt.show()
# Example usage:
keypoints = test_predict_plot.detach().numpy() # Replace with your 33 key points
plot_human_pose(keypoints)
"""### As you can see, the model predicts the pose of the person very accurately as depicted by its train and validation accuracy"""
# torch.save(model.state_dict(), '/content/drive/MyDrive/Ayush sarangi/model.pth')
torch.save( model, '/content/drive/MyDrive/Ayush sarangi/entire_model.pt')
import cv2
# test_image = cv2.imread('/content/drive/MyDrive/CNN_Dataset/02e442be-aec7-4f7c-93a7-e4246d0e1f93.JPG')
# # test_image = cv2.resize(test_image, (32,32))
# # test_image.shape
def predict_pose(test_image):
img = cv2.resize(test_image, (32,32))
convert_tensor = transforms.ToTensor()
tensor_img = convert_tensor(img)
tensor_img = tensor_img[None,:,:,:]
model.eval()
optimizer.zero_grad()
outputs = model(tensor_img)
pred_keypoints = outputs.reshape(1,33,4)[0]
pred_keypoints = pred_keypoints.detach().numpy()
return plot_human_pose(pred_keypoints)
predict_pose(test_image)
pose_detector = gr.Interface(fn = predict_pose, inputs = gr.Image(type = 'pil'), label = "Image" )
pose_detector.launch()