|
import gradio as gr |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
from transformers import AutoProcessor, AutoModelForTextToSpectrogram |
|
from datasets import load_dataset |
|
import torch |
|
import soundfile as sf |
|
import os |
|
|
|
|
|
processor = AutoProcessor.from_pretrained("ayush2607/speecht5_tts_technical_data") |
|
model = AutoModelForTextToSpectrogram.from_pretrained("ayush2607/speecht5_tts_technical_data") |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
|
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) |
|
|
|
def text_to_speech(text): |
|
inputs = processor(text=text, return_tensors="pt") |
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) |
|
|
|
output_path = "output.wav" |
|
sf.write(output_path, speech.numpy(), samplerate=16000) |
|
|
|
return output_path |
|
|
|
|
|
iface = gr.Interface( |
|
fn=text_to_speech, |
|
inputs=gr.Textbox(label="Enter text to convert to speech"), |
|
outputs=gr.Audio(label="Generated Speech"), |
|
title="Text-to-Speech Converter", |
|
description="Convert text to speech using the SpeechT5 model." |
|
) |
|
|
|
|
|
iface.launch() |