File size: 9,589 Bytes
3f02d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a417ea3
3f02d46
 
 
 
 
 
 
 
 
 
 
c9abdca
a417ea3
389a372
3f02d46
 
c9abdca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f02d46
 
 
 
 
 
 
 
 
c9abdca
3f02d46
 
 
 
 
a417ea3
389a372
3f02d46
 
a417ea3
 
 
 
 
 
 
3f02d46
 
 
 
 
 
 
 
 
c9abdca
3f02d46
 
 
a417ea3
 
 
 
 
 
 
 
 
3f02d46
a417ea3
 
3f02d46
a417ea3
3f02d46
a417ea3
3f02d46
 
a417ea3
 
3f02d46
 
 
 
 
 
a417ea3
 
 
 
3f02d46
 
 
 
 
 
 
 
 
 
 
 
a417ea3
 
 
 
3f02d46
 
 
 
 
 
 
 
 
 
 
 
a417ea3
 
 
 
3f02d46
 
 
 
 
 
 
 
 
 
 
 
a417ea3
 
 
 
3f02d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a417ea3
 
 
 
 
c9abdca
a417ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9abdca
a417ea3
 
 
 
 
3f02d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9abdca
3f02d46
 
 
 
a417ea3
3f02d46
 
 
 
a417ea3
3f02d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# PSET 1: Bottom-Up Synthesis\n",
    "\n",
    "I follow Algorithm 1 in the BUSTLE paper:\n",
    "\n",
    "> Odena, A. *et al.* BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration. in *9th International Conference on Learning Representations*; 2021 May 3-7; Austria.\n",
    "\n",
    "First, I import the required libraries."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import itertools\n",
    "\n",
    "# argument parser for command line arguments\n",
    "import argparse\n",
    "\n",
    "# import arithmetic module\n",
    "# from arithmetic import *\n",
    "# from abstract_syntax_tree import OperatorNode\n",
    "from examples import example_set, check_examples\n",
    "import config"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "24"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "add_node = OperatorNode(Add(), [IntegerConstant(7), IntegerConstant(5)])\n",
    "subtract_node = OperatorNode(Subtract(), [IntegerConstant(3), IntegerConstant(1)])\n",
    "multiply_node = OperatorNode(Multiply(), [add_node, subtract_node])\n",
    "multiply_node.evaluate()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "First, I define variables as proxies for command-line arguments provided to the synthesizer."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "domain = \"arithmetic\"\n",
    "examples_key = \"addition\"\n",
    "examples = example_set[examples_key]\n",
    "max_weight = 3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "First, I define a function to check that, across all input-output pairs, all inputs are of the same length and that argument types are consistent across inputs."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "I provide examples of arithmetic operations."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "class IntegerVariable:\n",
    "    '''\n",
    "    Class to represent an integer variable. Note that position is the position of the variable in the input.\n",
    "    For example, if the input is [4, 5, 6] and the variable is the third element (i.e., 6), then position = 2.\n",
    "    '''\n",
    "    def __init__(self, position):\n",
    "        self.value = None           # value of the variable, initially None\n",
    "        self.position = position    # position of the variable in the arguments to program\n",
    "        self.type = int             # type of the variable\n",
    "\n",
    "    def assign(self, value):\n",
    "        self.value = value\n",
    "\n",
    "class IntegerConstant:\n",
    "    '''\n",
    "    Class to represent an integer constant.\n",
    "    '''\n",
    "    def __init__(self, value):\n",
    "        self.value = value  # value of the constant\n",
    "        self.type = int     # type of the constant\n",
    "\n",
    "class Add:\n",
    "    '''\n",
    "    Operator to add two numerical values.\n",
    "    '''\n",
    "    def __init__(self):\n",
    "        self.arity = 2                  # number of arguments\n",
    "        self.arg_types = [int, int]     # argument types\n",
    "        self.return_type = int          # return type\n",
    "        self.weight = 1                 # weight\n",
    "\n",
    "    def __call__(self, x, y):\n",
    "        return x + y\n",
    "    \n",
    "    def str(x, y):\n",
    "        return f\"{x} + {y}\"\n",
    "\n",
    "class Subtract:\n",
    "    '''\n",
    "    Operator to subtract two numerical values.\n",
    "    '''\n",
    "    def __init__(self):\n",
    "        self.arity = 2                  # number of arguments\n",
    "        self.arg_types = [int, int]     # argument types\n",
    "        self.return_type = int          # return type\n",
    "        self.weight = 1                 # weight\n",
    "\n",
    "    def __call__(self, x, y):\n",
    "        return x - y\n",
    "    \n",
    "    def str(x, y):\n",
    "        return f\"{x} - {y}\"\n",
    "    \n",
    "class Multiply:\n",
    "    '''\n",
    "    Operator to multiply two numerical values.\n",
    "    '''\n",
    "    def __init__(self):\n",
    "        self.arity = 2                  # number of arguments\n",
    "        self.arg_types = [int, int]     # argument types\n",
    "        self.return_type = int          # return type\n",
    "        self.weight = 1                 # weight\n",
    "\n",
    "    def __call__(self, x, y):\n",
    "        return x * y\n",
    "    \n",
    "    def str(x, y):\n",
    "        return f\"{x} * {y}\" \n",
    "\n",
    "class Divide:\n",
    "    '''\n",
    "    Operator to divide two numerical values.\n",
    "    '''\n",
    "    def __init__(self):\n",
    "        self.arity = 2                  # number of arguments\n",
    "        self.arg_types = [int, int]     # argument types\n",
    "        self.return_type = int          # return type\n",
    "        self.weight = 1                 # weight\n",
    "\n",
    "    def __call__(self, x, y):\n",
    "        try: # check for division by zero error\n",
    "            return x / y\n",
    "        except ZeroDivisionError:\n",
    "            return None\n",
    "    \n",
    "    def str(x, y):\n",
    "        return f\"{x} / {y}\"\n",
    "\n",
    "\n",
    "'''\n",
    "GLOBAL CONSTANTS\n",
    "''' \n",
    "\n",
    "# define operators\n",
    "arithmetic_operators = [Add(), Subtract(), Multiply(), Divide()]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "I define a function to extract constants from examples."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def extract_constants(examples):\n",
    "    '''\n",
    "    Extracts the constants from the input-output examples. Also constructs variables as needed\n",
    "    based on the input-output examples, and adds them to the list of constants.\n",
    "    '''\n",
    "\n",
    "    # check validity of provided examples\n",
    "    # if valid, extract arity and argument types\n",
    "    arity, arg_types = check_examples(examples)\n",
    "\n",
    "    # initialize list of constants\n",
    "    constants = []\n",
    "\n",
    "    # get unique set of inputs\n",
    "    inputs = [input for example in examples for input in example[0]]\n",
    "    inputs = set(inputs)\n",
    "\n",
    "    # add 1 to the set of inputs\n",
    "    inputs.add(1)\n",
    "\n",
    "    # extract constants in input\n",
    "    for input in inputs:\n",
    "\n",
    "        if type(input) == int:\n",
    "            constants.append(IntegerConstant(input))\n",
    "        elif type(input) == str:\n",
    "            # constants.append(StringConstant(input))\n",
    "            pass\n",
    "        else:\n",
    "            raise Exception(\"Input of unknown type.\")\n",
    "        \n",
    "    # initialize list of variables\n",
    "    variables = []\n",
    "\n",
    "    # extract variables in input\n",
    "    for position, arg in enumerate(arg_types):\n",
    "        if arg == int:\n",
    "            variables.append(IntegerVariable(position))\n",
    "        elif arg == str:\n",
    "            # variables.append(StringVariable(position))\n",
    "            pass\n",
    "        else:\n",
    "            raise Exception(\"Input of unknown type.\")\n",
    "\n",
    "    return constants + variables"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# initialize program bank\n",
    "program_bank = extract_constants(examples)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "I define a function to determine observational equivalence."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def observationally_equivalent(a, b):\n",
    "    \"\"\"\n",
    "    Returns True if a and b are observationally equivalent, False otherwise.\n",
    "    \"\"\"\n",
    "\n",
    "    pass"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, I define the bottom-up synthesis algorithm."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# iterate over each level\n",
    "for i in range(2, max_weight):\n",
    "\n",
    "    # define level program bank\n",
    "    level_program_bank = []\n",
    "\n",
    "    for op in arithmetic_operators:\n",
    "\n",
    "        break"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}