Spaces:
Running
Running
File size: 9,589 Bytes
3f02d46 a417ea3 3f02d46 c9abdca a417ea3 389a372 3f02d46 c9abdca 3f02d46 c9abdca 3f02d46 a417ea3 389a372 3f02d46 a417ea3 3f02d46 c9abdca 3f02d46 a417ea3 3f02d46 a417ea3 3f02d46 a417ea3 3f02d46 a417ea3 3f02d46 a417ea3 3f02d46 a417ea3 3f02d46 a417ea3 3f02d46 a417ea3 3f02d46 a417ea3 3f02d46 a417ea3 c9abdca a417ea3 c9abdca a417ea3 3f02d46 c9abdca 3f02d46 a417ea3 3f02d46 a417ea3 3f02d46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PSET 1: Bottom-Up Synthesis\n",
"\n",
"I follow Algorithm 1 in the BUSTLE paper:\n",
"\n",
"> Odena, A. *et al.* BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration. in *9th International Conference on Learning Representations*; 2021 May 3-7; Austria.\n",
"\n",
"First, I import the required libraries."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import itertools\n",
"\n",
"# argument parser for command line arguments\n",
"import argparse\n",
"\n",
"# import arithmetic module\n",
"# from arithmetic import *\n",
"# from abstract_syntax_tree import OperatorNode\n",
"from examples import example_set, check_examples\n",
"import config"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"24"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"add_node = OperatorNode(Add(), [IntegerConstant(7), IntegerConstant(5)])\n",
"subtract_node = OperatorNode(Subtract(), [IntegerConstant(3), IntegerConstant(1)])\n",
"multiply_node = OperatorNode(Multiply(), [add_node, subtract_node])\n",
"multiply_node.evaluate()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, I define variables as proxies for command-line arguments provided to the synthesizer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"domain = \"arithmetic\"\n",
"examples_key = \"addition\"\n",
"examples = example_set[examples_key]\n",
"max_weight = 3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, I define a function to check that, across all input-output pairs, all inputs are of the same length and that argument types are consistent across inputs."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I provide examples of arithmetic operations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class IntegerVariable:\n",
" '''\n",
" Class to represent an integer variable. Note that position is the position of the variable in the input.\n",
" For example, if the input is [4, 5, 6] and the variable is the third element (i.e., 6), then position = 2.\n",
" '''\n",
" def __init__(self, position):\n",
" self.value = None # value of the variable, initially None\n",
" self.position = position # position of the variable in the arguments to program\n",
" self.type = int # type of the variable\n",
"\n",
" def assign(self, value):\n",
" self.value = value\n",
"\n",
"class IntegerConstant:\n",
" '''\n",
" Class to represent an integer constant.\n",
" '''\n",
" def __init__(self, value):\n",
" self.value = value # value of the constant\n",
" self.type = int # type of the constant\n",
"\n",
"class Add:\n",
" '''\n",
" Operator to add two numerical values.\n",
" '''\n",
" def __init__(self):\n",
" self.arity = 2 # number of arguments\n",
" self.arg_types = [int, int] # argument types\n",
" self.return_type = int # return type\n",
" self.weight = 1 # weight\n",
"\n",
" def __call__(self, x, y):\n",
" return x + y\n",
" \n",
" def str(x, y):\n",
" return f\"{x} + {y}\"\n",
"\n",
"class Subtract:\n",
" '''\n",
" Operator to subtract two numerical values.\n",
" '''\n",
" def __init__(self):\n",
" self.arity = 2 # number of arguments\n",
" self.arg_types = [int, int] # argument types\n",
" self.return_type = int # return type\n",
" self.weight = 1 # weight\n",
"\n",
" def __call__(self, x, y):\n",
" return x - y\n",
" \n",
" def str(x, y):\n",
" return f\"{x} - {y}\"\n",
" \n",
"class Multiply:\n",
" '''\n",
" Operator to multiply two numerical values.\n",
" '''\n",
" def __init__(self):\n",
" self.arity = 2 # number of arguments\n",
" self.arg_types = [int, int] # argument types\n",
" self.return_type = int # return type\n",
" self.weight = 1 # weight\n",
"\n",
" def __call__(self, x, y):\n",
" return x * y\n",
" \n",
" def str(x, y):\n",
" return f\"{x} * {y}\" \n",
"\n",
"class Divide:\n",
" '''\n",
" Operator to divide two numerical values.\n",
" '''\n",
" def __init__(self):\n",
" self.arity = 2 # number of arguments\n",
" self.arg_types = [int, int] # argument types\n",
" self.return_type = int # return type\n",
" self.weight = 1 # weight\n",
"\n",
" def __call__(self, x, y):\n",
" try: # check for division by zero error\n",
" return x / y\n",
" except ZeroDivisionError:\n",
" return None\n",
" \n",
" def str(x, y):\n",
" return f\"{x} / {y}\"\n",
"\n",
"\n",
"'''\n",
"GLOBAL CONSTANTS\n",
"''' \n",
"\n",
"# define operators\n",
"arithmetic_operators = [Add(), Subtract(), Multiply(), Divide()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I define a function to extract constants from examples."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def extract_constants(examples):\n",
" '''\n",
" Extracts the constants from the input-output examples. Also constructs variables as needed\n",
" based on the input-output examples, and adds them to the list of constants.\n",
" '''\n",
"\n",
" # check validity of provided examples\n",
" # if valid, extract arity and argument types\n",
" arity, arg_types = check_examples(examples)\n",
"\n",
" # initialize list of constants\n",
" constants = []\n",
"\n",
" # get unique set of inputs\n",
" inputs = [input for example in examples for input in example[0]]\n",
" inputs = set(inputs)\n",
"\n",
" # add 1 to the set of inputs\n",
" inputs.add(1)\n",
"\n",
" # extract constants in input\n",
" for input in inputs:\n",
"\n",
" if type(input) == int:\n",
" constants.append(IntegerConstant(input))\n",
" elif type(input) == str:\n",
" # constants.append(StringConstant(input))\n",
" pass\n",
" else:\n",
" raise Exception(\"Input of unknown type.\")\n",
" \n",
" # initialize list of variables\n",
" variables = []\n",
"\n",
" # extract variables in input\n",
" for position, arg in enumerate(arg_types):\n",
" if arg == int:\n",
" variables.append(IntegerVariable(position))\n",
" elif arg == str:\n",
" # variables.append(StringVariable(position))\n",
" pass\n",
" else:\n",
" raise Exception(\"Input of unknown type.\")\n",
"\n",
" return constants + variables"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# initialize program bank\n",
"program_bank = extract_constants(examples)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I define a function to determine observational equivalence."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def observationally_equivalent(a, b):\n",
" \"\"\"\n",
" Returns True if a and b are observationally equivalent, False otherwise.\n",
" \"\"\"\n",
"\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, I define the bottom-up synthesis algorithm."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# iterate over each level\n",
"for i in range(2, max_weight):\n",
"\n",
" # define level program bank\n",
" level_program_bank = []\n",
"\n",
" for op in arithmetic_operators:\n",
"\n",
" break"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|