import streamlit as st from transformers import AutoModel, AutoTokenizer from peft import PeftModel # Loading LED IN Model base_model = "unsloth/llama-3-8b-bnb-4bit" led = AutoModel.from_pretrained(base_model) adapter_model_in = f"sloganLLama" led_in = PeftModel.from_pretrained(led, adapter_model_in) led_in_tokenizer = AutoTokenizer.from_pretrained(base_model) # Generating Summary def summarize(model, tokenizer, text): input_tokenized = tokenizer.encode(text, return_tensors='pt', max_length=8192, truncation=True) summary_ids = model.generate(input_tokenized, num_beams=4, length_penalty=0.1, min_length=32, max_length=512) summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids][0] return summary # Reading Txt File def read_txt_file(file): text = file.read().decode('utf-8') return text st.set_page_config(page_title="Slogan Generation", page_icon="img.png") title = "Slogan Generation" col1, col2 = st.columns([1,7]) with col1: st.image("img.png") with col2: st.title(title) st.write("Capturing attention, conveying value, and driving brand loyalty through impactful slogan.") if "user_text" not in st.session_state: st.session_state.user_text = "" upload_file = st.file_uploader("Upload a .txt file", type="txt") if upload_file is not None: user_text = read_txt_file(upload_file) else: user_text = st.text_area("Paste your brand description here:", value=st.session_state.user_text, height=300) if st.button("Generate Slogan"): with st.spinner("Generating Slogan..."): try: summary_text = summarize(led_in, led_in_tokenizer, user_text) st.session_state.user_text = user_text st.write("") st.success(summary_text) print(summary_text) except Exception as e: st.error(f"An error occurred: {e}")