Mohamed Aymane Farhi
commited on
Commit
•
364aa46
1
Parent(s):
0b452e3
Add other languages.
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: MMS ASR
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: MMS ASR
|
3 |
+
emoji: 🎤
|
4 |
colorFrom: green
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
3 |
import torch
|
4 |
-
import numpy as np
|
5 |
import librosa
|
6 |
|
7 |
model_id = "facebook/mms-1b-all"
|
|
|
|
|
8 |
|
9 |
-
def transcribe(audio_file_mic=None, audio_file_upload=None):
|
10 |
if audio_file_mic:
|
11 |
audio_file = audio_file_mic
|
12 |
elif audio_file_upload:
|
@@ -14,12 +15,14 @@ def transcribe(audio_file_mic=None, audio_file_upload=None):
|
|
14 |
else:
|
15 |
return "Please upload an audio file or record one"
|
16 |
|
|
|
17 |
speech, sample_rate = librosa.load(audio_file)
|
18 |
if sample_rate != 16000:
|
19 |
speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000)
|
20 |
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt")
|
25 |
|
@@ -30,11 +33,14 @@ def transcribe(audio_file_mic=None, audio_file_upload=None):
|
|
30 |
transcription = processor.decode(ids)
|
31 |
return transcription
|
32 |
|
|
|
|
|
33 |
iface = gr.Interface(fn=transcribe,
|
34 |
inputs=[
|
35 |
gr.Audio(source="microphone", type="filepath"),
|
36 |
-
gr.Audio(source="upload", type="filepath")
|
|
|
37 |
],
|
38 |
-
outputs=["textbox"]
|
39 |
)
|
40 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
3 |
import torch
|
|
|
4 |
import librosa
|
5 |
|
6 |
model_id = "facebook/mms-1b-all"
|
7 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
8 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_id)
|
9 |
|
10 |
+
def transcribe(audio_file_mic=None, audio_file_upload=None, language="eng"):
|
11 |
if audio_file_mic:
|
12 |
audio_file = audio_file_mic
|
13 |
elif audio_file_upload:
|
|
|
15 |
else:
|
16 |
return "Please upload an audio file or record one"
|
17 |
|
18 |
+
# Make sure audio is 16kHz mono WAV
|
19 |
speech, sample_rate = librosa.load(audio_file)
|
20 |
if sample_rate != 16000:
|
21 |
speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000)
|
22 |
|
23 |
+
# Keep the same model in memory and simply switch out the language adapters by calling load_adapter() for the model and set_target_lang() for the tokenizer
|
24 |
+
processor.tokenizer.set_target_lang(language)
|
25 |
+
model.load_adapter(language)
|
26 |
|
27 |
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt")
|
28 |
|
|
|
33 |
transcription = processor.decode(ids)
|
34 |
return transcription
|
35 |
|
36 |
+
languages = list(processor.tokenizer.vocab.keys())
|
37 |
+
|
38 |
iface = gr.Interface(fn=transcribe,
|
39 |
inputs=[
|
40 |
gr.Audio(source="microphone", type="filepath"),
|
41 |
+
gr.Audio(source="upload", type="filepath"),
|
42 |
+
gr.Dropdown(choices=languages, label="Language")
|
43 |
],
|
44 |
+
outputs=["textbox"]
|
45 |
)
|
46 |
iface.launch()
|