File size: 1,352 Bytes
dbdbddf
 
1abadf7
dbdbddf
 
1abadf7
 
 
dbdbddf
1abadf7
 
8b21536
1abadf7
dbdbddf
 
1abadf7
 
dbdbddf
1abadf7
 
 
 
 
 
fe10d73
1abadf7
fe10d73
 
 
 
dbdbddf
1abadf7
fe10d73
 
 
3d45b3a
2c62fa3
fe10d73
dbdbddf
1abadf7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
from doctr.io import DocumentFile
from doctr.models import ocr_predictor, from_hub
import gradio as gr

os.environ['USE_TORCH'] = '1'
reco_model = from_hub('ayymen/crnn_mobilenet_v3_large_gen_hw')
predictor = ocr_predictor(reco_arch=reco_model, pretrained=True)

title = "Tifinagh OCR"
description = "Upload an image to get the OCR results !"

def ocr(img):
    img.save("out.jpg")
    doc = DocumentFile.from_images("out.jpg")
    output = predictor(doc)
    res = ""
    for obj in output.pages:
        for obj1 in obj.blocks:
            for obj2 in obj1.lines:
                for obj3 in obj2.words:
                    res=res + " " + obj3.value
            res=res + "\n"
        res=res + "\n\n"
    _output_name = "RESULT_OCR.txt"
    open(_output_name, 'w', encoding="utf-8").close() # clear file
    with open(_output_name, "w", encoding="utf-8", errors="ignore") as f:
        f.write(res)
        print("Writing into file")
    return res, _output_name

demo = gr.Interface(fn=ocr,
                    inputs=gr.Image(type="pil"),
                    outputs=["text", "file"],
                    title=title,
                    description=description,
                    examples=[["Examples/Book.png"],["Examples/News.png"],["Examples/Manuscript.jpg"],["Examples/Files.jpg"]]
                    )

demo.launch(debug=True)