Spaces:
Running
Running
import os | |
from doctr.io import DocumentFile | |
from doctr.models import ocr_predictor, from_hub | |
import gradio as gr | |
os.environ['USE_TORCH'] = '1' | |
reco_model_zgh = from_hub('ayymen/crnn_mobilenet_v3_large_zgh') | |
predictor_zgh = ocr_predictor(reco_arch=reco_model_zgh, pretrained=True) | |
reco_model = from_hub('ayymen/crnn_mobilenet_v3_large_tifinagh') | |
predictor = ocr_predictor(reco_arch=reco_model, pretrained=True) | |
title = "Tifinagh OCR" | |
description = """Upload an image to get the OCR results! | |
Thanks to @iseddik for the data!""" | |
def ocr(img, script): | |
img.save("out.jpg") | |
doc = DocumentFile.from_images("out.jpg") | |
output = predictor_zgh(doc) if script == "Tifinagh-IRCAM" else predictor(doc) | |
res = "" | |
for obj in output.pages: | |
for obj1 in obj.blocks: | |
for obj2 in obj1.lines: | |
for obj3 in obj2.words: | |
res = res + " " + obj3.value | |
res = res + "\n" | |
res = res + "\n" | |
_output_name = "RESULT_OCR.txt" | |
open(_output_name, 'w', encoding="utf-8").close() # clear file | |
with open(_output_name, "w", encoding="utf-8", errors="ignore") as f: | |
f.write(res) | |
print("Writing into file") | |
return res, _output_name | |
demo = gr.Interface(fn=ocr, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Dropdown(choices=['Tifinagh-IRCAM', 'Tifinagh'], label="Script", value="Tifinagh-IRCAM") | |
], | |
outputs=[ | |
gr.Textbox(lines=10, label="Full Text"), | |
gr.File(label="Download OCR Results") | |
], | |
title=title, | |
description=description, | |
examples=[ | |
["Examples/3.png", "Tifinagh-IRCAM"], | |
["Examples/2.jpg", "Tifinagh-IRCAM"], | |
["Examples/1.jpg", "Tifinagh-IRCAM"] | |
] | |
) | |
demo.launch(debug=True) | |