Spaces:
azhan77168
/
Running on Zero

oo / OmniGen /pipeline.py
Shitao's picture
Update OmniGen/pipeline.py
8032ab8 verified
import os
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import gc
from PIL import Image
import numpy as np
import torch
from huggingface_hub import snapshot_download
from peft import LoraConfig, PeftModel
from diffusers.models import AutoencoderKL
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from safetensors.torch import load_file
from OmniGen import OmniGen, OmniGenProcessor, OmniGenScheduler
logger = logging.get_logger(__name__)
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from OmniGen import OmniGenPipeline
>>> pipe = FluxControlNetPipeline.from_pretrained(
... base_model
... )
>>> prompt = "A woman holds a bouquet of flowers and faces the camera"
>>> image = pipe(
... prompt,
... guidance_scale=2.5,
... num_inference_steps=50,
... ).images[0]
>>> image.save("t2i.png")
```
"""
90
class OmniGenPipeline:
def __init__(
self,
vae: AutoencoderKL,
model: OmniGen,
processor: OmniGenProcessor,
):
self.vae = vae
self.model = model
self.processor = processor
if torch.cuda.is_available():
self.device = torch.device("cuda")
elif torch.backends.mps.is_available():
self.device = torch.device("mps")
else:
logger.info("Don't detect any available devices, using CPU instead")
self.device = torch.device("cpu")
self.model.to(torch.bfloat16)
self.model.eval()
self.vae.eval()
self.model_cpu_offload = False
@classmethod
def from_pretrained(cls, model_name, vae_path: str=None):
if not os.path.exists(model_name) or (not os.path.exists(os.path.join(model_name, 'model.safetensors')) and model_name == "Shitao/OmniGen-v1"):
logger.info("Model not found, downloading...")
cache_folder = os.getenv('HF_HUB_CACHE')
model_name = snapshot_download(repo_id=model_name,
cache_dir=cache_folder,
ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5', 'model.pt'])
logger.info(f"Downloaded model to {model_name}")
model = OmniGen.from_pretrained(model_name)
processor = OmniGenProcessor.from_pretrained(model_name)
if os.path.exists(os.path.join(model_name, "vae")):
vae = AutoencoderKL.from_pretrained(os.path.join(model_name, "vae"))
elif vae_path is not None:
vae = AutoencoderKL.from_pretrained(vae_path).to(device)
else:
logger.info(f"No VAE found in {model_name}, downloading stabilityai/sdxl-vae from HF")
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae").to(device)
return cls(vae, model, processor)
def merge_lora(self, lora_path: str):
model = PeftModel.from_pretrained(self.model, lora_path)
model.merge_and_unload()
self.model = model
def to(self, device: Union[str, torch.device]):
if isinstance(device, str):
device = torch.device(device)
self.model.to(device)
self.vae.to(device)
self.device = device
def vae_encode(self, x, dtype):
if self.vae.config.shift_factor is not None:
x = self.vae.encode(x).latent_dist.sample()
x = (x - self.vae.config.shift_factor) * self.vae.config.scaling_factor
else:
x = self.vae.encode(x).latent_dist.sample().mul_(self.vae.config.scaling_factor)
x = x.to(dtype)
return x
def move_to_device(self, data):
if isinstance(data, list):
return [x.to(self.device) for x in data]
return data.to(self.device)
def enable_model_cpu_offload(self):
self.model_cpu_offload = True
self.model.to("cpu")
self.vae.to("cpu")
torch.cuda.empty_cache() # Clear VRAM
gc.collect() # Run garbage collection to free system RAM
def disable_model_cpu_offload(self):
self.model_cpu_offload = False
self.model.to(self.device)
self.vae.to(self.device)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
input_images: Union[List[str], List[List[str]]] = None,
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 50,
guidance_scale: float = 3,
use_img_guidance: bool = True,
img_guidance_scale: float = 1.6,
max_input_image_size: int = 1024,
separate_cfg_infer: bool = True,
offload_model: bool = False,
use_kv_cache: bool = True,
offload_kv_cache: bool = True,
use_input_image_size_as_output: bool = False,
dtype: torch.dtype = torch.bfloat16,
seed: int = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
input_images (`List[str]` or `List[List[str]]`, *optional*):
The list of input images. We will replace the "<|image_i|>" in prompt with the 1-th image in list.
height (`int`, *optional*, defaults to 1024):
The height in pixels of the generated image. The number must be a multiple of 16.
width (`int`, *optional*, defaults to 1024):
The width in pixels of the generated image. The number must be a multiple of 16.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
use_img_guidance (`bool`, *optional*, defaults to True):
Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
img_guidance_scale (`float`, *optional*, defaults to 1.6):
Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
max_input_image_size (`int`, *optional*, defaults to 1024): the maximum size of input image, which will be used to crop the input image to the maximum size
separate_cfg_infer (`bool`, *optional*, defaults to False):
Perform inference on images with different guidance separately; this can save memory when generating images of large size at the expense of slower inference.
use_kv_cache (`bool`, *optional*, defaults to True): enable kv cache to speed up the inference
offload_kv_cache (`bool`, *optional*, defaults to True): offload the cached key and value to cpu, which can save memory but slow down the generation silightly
offload_model (`bool`, *optional*, defaults to False): offload the model to cpu, which can save memory but slow down the generation
use_input_image_size_as_output (bool, defaults to False): whether to use the input image size as the output image size, which can be used for single-image input, e.g., image editing task
seed (`int`, *optional*):
A random seed for generating output.
dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
data type for the model
Examples:
Returns:
A list with the generated images.
"""
# check inputs:
if use_input_image_size_as_output:
assert isinstance(prompt, str) and len(input_images) == 1, "if you want to make sure the output image have the same size as the input image, please only input one image instead of multiple input images"
else:
assert height%16 == 0 and width%16 == 0, "The height and width must be a multiple of 16."
if input_images is None:
use_img_guidance = False
if isinstance(prompt, str):
prompt = [prompt]
input_images = [input_images] if input_images is not None else None
# set model and processor
if max_input_image_size != self.processor.max_image_size:
self.processor = OmniGenProcessor(self.processor.text_tokenizer, max_image_size=max_input_image_size)
if offload_model:
self.enable_model_cpu_offload()
else:
self.disable_model_cpu_offload()
input_data = self.processor(prompt, input_images, height=height, width=width, use_img_cfg=use_img_guidance, separate_cfg_input=separate_cfg_infer, use_input_image_size_as_output=use_input_image_size_as_output)
num_prompt = len(prompt)
num_cfg = 2 if use_img_guidance else 1
if use_input_image_size_as_output:
if separate_cfg_infer:
height, width = input_data['input_pixel_values'][0][0].shape[-2:]
else:
height, width = input_data['input_pixel_values'][0].shape[-2:]
latent_size_h, latent_size_w = height//8, width//8
if seed is not None:
generator = torch.Generator(device=self.device).manual_seed(seed)
else:
generator = None
latents = torch.randn(num_prompt, 4, latent_size_h, latent_size_w, device=self.device, generator=generator)
latents = torch.cat([latents]*(1+num_cfg), 0).to(dtype)
if input_images is not None and self.model_cpu_offload: self.vae.to(self.device)
input_img_latents = []
if separate_cfg_infer:
for temp_pixel_values in input_data['input_pixel_values']:
temp_input_latents = []
for img in temp_pixel_values:
img = self.vae_encode(img.to(self.device), dtype)
temp_input_latents.append(img)
input_img_latents.append(temp_input_latents)
else:
for img in input_data['input_pixel_values']:
img = self.vae_encode(img.to(self.device), dtype)
input_img_latents.append(img)
if input_images is not None and self.model_cpu_offload:
self.vae.to('cpu')
torch.cuda.empty_cache() # Clear VRAM
gc.collect() # Run garbage collection to free system RAM
model_kwargs = dict(input_ids=self.move_to_device(input_data['input_ids']),
input_img_latents=input_img_latents,
input_image_sizes=input_data['input_image_sizes'],
attention_mask=self.move_to_device(input_data["attention_mask"]),
position_ids=self.move_to_device(input_data["position_ids"]),
cfg_scale=guidance_scale,
img_cfg_scale=img_guidance_scale,
use_img_cfg=use_img_guidance,
use_kv_cache=use_kv_cache,
offload_model=offload_model,
)
if separate_cfg_infer:
func = self.model.forward_with_separate_cfg
else:
func = self.model.forward_with_cfg
self.model.to(dtype)
if self.model_cpu_offload:
for name, param in self.model.named_parameters():
if 'layers' in name and 'layers.0' not in name:
param.data = param.data.cpu()
else:
param.data = param.data.to(self.device)
for buffer_name, buffer in self.model.named_buffers():
setattr(self.model, buffer_name, buffer.to(self.device))
# else:
# self.model.to(self.device)
scheduler = OmniGenScheduler(num_steps=num_inference_steps)
samples = scheduler(latents, func, model_kwargs, use_kv_cache=use_kv_cache, offload_kv_cache=offload_kv_cache)
samples = samples.chunk((1+num_cfg), dim=0)[0]
if self.model_cpu_offload:
self.model.to('cpu')
torch.cuda.empty_cache()
gc.collect()
self.vae.to(self.device)
samples = samples.to(torch.float32)
if self.vae.config.shift_factor is not None:
samples = samples / self.vae.config.scaling_factor + self.vae.config.shift_factor
else:
samples = samples / self.vae.config.scaling_factor
samples = self.vae.decode(samples).sample
if self.model_cpu_offload:
self.vae.to('cpu')
torch.cuda.empty_cache()
gc.collect()
output_samples = (samples * 0.5 + 0.5).clamp(0, 1)*255
output_samples = output_samples.permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
output_images = []
for i, sample in enumerate(output_samples):
output_images.append(Image.fromarray(sample))
torch.cuda.empty_cache() # Clear VRAM
gc.collect() # Run garbage collection to free system RAM
return output_images