aznasut commited on
Commit
33dfaa8
·
1 Parent(s): fc4eadd

ignore temp files

Browse files
Files changed (2) hide show
  1. Dockerfile +2 -2
  2. main.py +9 -7
Dockerfile CHANGED
@@ -14,9 +14,9 @@ RUN apt-get update && apt-get install -y \
14
 
15
  # Copy the current directory contents into the container at /app
16
  COPY . /app
17
- RUN chown daemon:daemon -R /app/*
18
  # Install any needed packages specified in requirements.txt
19
- RUN pip install --no-cache-dir -r requirements.txt
20
 
21
  # Make port 7680 available to the world outside this container
22
  EXPOSE 7860
 
14
 
15
  # Copy the current directory contents into the container at /app
16
  COPY . /app
17
+ # RUN chown daemon:daemon -R /app/*
18
  # Install any needed packages specified in requirements.txt
19
+ # RUN pip install --no-cache-dir -r requirements.txt
20
 
21
  # Make port 7680 available to the world outside this container
22
  EXPOSE 7860
main.py CHANGED
@@ -5,7 +5,7 @@ import aiohttp
5
  from fastapi import FastAPI, File, UploadFile, HTTPException
6
  from fastapi.responses import JSONResponse
7
 
8
- import os
9
  # from os import path
10
  # cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
11
 
@@ -21,7 +21,9 @@ import os
21
  # os.environ['TORCH_HOME'] = PATH
22
  # os.environ['HF_HUB_CACHE'] = '/home/ahmadzen/.cache/huggingface'
23
 
24
- from transformers import AutoImageProcessor, ViTForImageClassification
 
 
25
  from PIL import Image
26
  from cachetools import Cache
27
  import torch
@@ -41,9 +43,9 @@ logging.basicConfig(
41
  cache = Cache(maxsize=1000)
42
 
43
  # Load the model using the transformers pipeline
44
- # model = pipeline("image-classification", model="Wvolf/ViT_Deepfake_Detection")
45
- image_processor = AutoImageProcessor.from_pretrained("Wvolf/ViT_Deepfake_Detection")
46
- model = ViTForImageClassification.from_pretrained("Wvolf/ViT_Deepfake_Detection")
47
 
48
  # Detect the device used by TensorFlow
49
  # DEVICE = "GPU" if tf.config.list_physical_devices("GPU") else "CPU"
@@ -153,7 +155,7 @@ async def classify_image(file: UploadFile = File(None)):
153
 
154
  return FileImageDetectionResponse(**response_data)
155
 
156
- except Exception as e:
157
  logging.error("Error processing image: %s", str(e))
158
  raise HTTPException(
159
  status_code=500, detail=f"Error processing image: {str(e)}"
@@ -233,7 +235,7 @@ async def classify_images(request: ImageUrlsRequest):
233
 
234
  response_data.append(detection_result)
235
 
236
- except Exception as e:
237
  logging.error("Error processing image from %s: %s", image_url, str(e))
238
  raise HTTPException(
239
  status_code=500,
 
5
  from fastapi import FastAPI, File, UploadFile, HTTPException
6
  from fastapi.responses import JSONResponse
7
 
8
+ # import os
9
  # from os import path
10
  # cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
11
 
 
21
  # os.environ['TORCH_HOME'] = PATH
22
  # os.environ['HF_HUB_CACHE'] = '/home/ahmadzen/.cache/huggingface'
23
 
24
+ # from transformers import AutoImageProcessor, ViTForImageClassification
25
+ from transformers import pipeline
26
+ from transformers.pipelines import PipelineException
27
  from PIL import Image
28
  from cachetools import Cache
29
  import torch
 
43
  cache = Cache(maxsize=1000)
44
 
45
  # Load the model using the transformers pipeline
46
+ model = pipeline("image-classification", model="Wvolf/ViT_Deepfake_Detection")
47
+ # image_processor = AutoImageProcessor.from_pretrained("Wvolf/ViT_Deepfake_Detection")
48
+ # model = ViTForImageClassification.from_pretrained("Wvolf/ViT_Deepfake_Detection")
49
 
50
  # Detect the device used by TensorFlow
51
  # DEVICE = "GPU" if tf.config.list_physical_devices("GPU") else "CPU"
 
155
 
156
  return FileImageDetectionResponse(**response_data)
157
 
158
+ except PipelineException as e:
159
  logging.error("Error processing image: %s", str(e))
160
  raise HTTPException(
161
  status_code=500, detail=f"Error processing image: {str(e)}"
 
235
 
236
  response_data.append(detection_result)
237
 
238
+ except PipelineException as e:
239
  logging.error("Error processing image from %s: %s", image_url, str(e))
240
  raise HTTPException(
241
  status_code=500,