Spaces:
Sleeping
Sleeping
File size: 13,155 Bytes
aefc9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os.path
import numpy as np
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import re
import torch
import tqdm
import argparse
import json
from data_builder import load_data, save_data
from metrics import get_roc_metrics, get_precision_recall_metrics
from model import load_tokenizer, load_model, get_model_fullname, from_pretrained
# define regex to match all <extra_id_*> tokens, where * is an integer
pattern = re.compile(r"<extra_id_\d+>")
def load_mask_model(model_name, device, cache_dir):
model_name = get_model_fullname(model_name)
# mask filling t5 model
print(f'Loading mask filling model {model_name}...')
mask_model = from_pretrained(AutoModelForSeq2SeqLM, model_name, {}, cache_dir)
mask_model = mask_model.to(device)
return mask_model
def load_mask_tokenizer(model_name, max_length, cache_dir):
model_name = get_model_fullname(model_name)
tokenizer = from_pretrained(AutoTokenizer, model_name, {'model_max_length': max_length}, cache_dir)
return tokenizer
def tokenize_and_mask(text, span_length, pct, ceil_pct=False):
buffer_size = 1
tokens = text.split(' ')
mask_string = '<<<mask>>>'
n_spans = pct * len(tokens) / (span_length + buffer_size * 2)
if ceil_pct:
n_spans = np.ceil(n_spans)
n_spans = int(n_spans)
n_masks = 0
while n_masks < n_spans:
start = np.random.randint(0, len(tokens) - span_length)
end = start + span_length
search_start = max(0, start - buffer_size)
search_end = min(len(tokens), end + buffer_size)
if mask_string not in tokens[search_start:search_end]:
tokens[start:end] = [mask_string]
n_masks += 1
# replace each occurrence of mask_string with <extra_id_NUM>, where NUM increments
num_filled = 0
for idx, token in enumerate(tokens):
if token == mask_string:
tokens[idx] = f'<extra_id_{num_filled}>'
num_filled += 1
assert num_filled == n_masks, f"num_filled {num_filled} != n_masks {n_masks}"
text = ' '.join(tokens)
return text
def count_masks(texts):
return [len([x for x in text.split() if x.startswith("<extra_id_")]) for text in texts]
# replace each masked span with a sample from T5 mask_model
def replace_masks(args, mask_model, mask_tokenizer, texts):
n_expected = count_masks(texts)
stop_id = mask_tokenizer.encode(f"<extra_id_{max(n_expected)}>")[0]
tokens = mask_tokenizer(texts, return_tensors="pt", padding=True).to(args.device)
outputs = mask_model.generate(**tokens, max_length=150, do_sample=True, top_p=args.mask_top_p,
num_return_sequences=1, eos_token_id=stop_id)
return mask_tokenizer.batch_decode(outputs, skip_special_tokens=False)
def extract_fills(texts):
# remove <pad> from beginning of each text
texts = [x.replace("<pad>", "").replace("</s>", "").strip() for x in texts]
# return the text in between each matched mask token
extracted_fills = [pattern.split(x)[1:-1] for x in texts]
# remove whitespace around each fill
extracted_fills = [[y.strip() for y in x] for x in extracted_fills]
return extracted_fills
def apply_extracted_fills(masked_texts, extracted_fills):
# split masked text into tokens, only splitting on spaces (not newlines)
tokens = [x.split(' ') for x in masked_texts]
n_expected = count_masks(masked_texts)
# replace each mask token with the corresponding fill
for idx, (text, fills, n) in enumerate(zip(tokens, extracted_fills, n_expected)):
if len(fills) < n:
tokens[idx] = []
else:
for fill_idx in range(n):
text[text.index(f"<extra_id_{fill_idx}>")] = fills[fill_idx]
# join tokens back into text
texts = [" ".join(x) for x in tokens]
return texts
def perturb_texts_(args, mask_model, mask_tokenizer, texts, ceil_pct=False):
span_length = args.span_length
pct = args.pct_words_masked
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for x in texts]
raw_fills = replace_masks(args, mask_model, mask_tokenizer, masked_texts)
extracted_fills = extract_fills(raw_fills)
perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills)
# Handle the fact that sometimes the model doesn't generate the right number of fills and we have to try again
attempts = 1
while '' in perturbed_texts:
idxs = [idx for idx, x in enumerate(perturbed_texts) if x == '']
print(f'WARNING: {len(idxs)} texts have no fills. Trying again [attempt {attempts}].')
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for idx, x in enumerate(texts) if idx in idxs]
raw_fills = replace_masks(args, mask_model, mask_tokenizer, masked_texts)
extracted_fills = extract_fills(raw_fills)
new_perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills)
for idx, x in zip(idxs, new_perturbed_texts):
perturbed_texts[idx] = x
attempts += 1
return perturbed_texts
def perturb_texts(args, mask_model, mask_tokenizer, texts, ceil_pct=False):
chunk_size = 10
outputs = []
for i in range(0, len(texts), chunk_size):
outputs.extend(perturb_texts_(args, mask_model, mask_tokenizer, texts[i:i + chunk_size], ceil_pct=ceil_pct))
return outputs
# Get the log likelihood of each text under the base_model
def get_ll(args, scoring_model, scoring_tokenizer, text):
with torch.no_grad():
tokenized = scoring_tokenizer(text, return_tensors="pt", return_token_type_ids=False).to(args.device)
labels = tokenized.input_ids
return -scoring_model(**tokenized, labels=labels).loss.item()
def get_lls(args, scoring_model, scoring_tokenizer, texts):
return [get_ll(args, scoring_model, scoring_tokenizer, text) for text in texts]
def generate_perturbs(args):
n_perturbations = args.n_perturbations
name = f'perturbation_{n_perturbations}'
# load model
mask_model = load_mask_model(args.mask_filling_model_name, args.device, args.cache_dir)
mask_model.eval()
try:
n_positions = mask_model.config.n_positions
except AttributeError:
n_positions = 512
mask_tokenizer = load_mask_tokenizer(args.mask_filling_model_name, n_positions, args.cache_dir)
# load data
data = load_data(args.dataset_file)
n_samples = len(data["sampled"])
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# generate perturb samples
perturbs = []
for idx in tqdm.tqdm(range(n_samples), desc=f"Perturb text"):
original_text = data["original"][idx]
sampled_text = data["sampled"][idx]
# perturb
p_sampled_text = perturb_texts(args, mask_model, mask_tokenizer, [sampled_text for _ in range(n_perturbations)])
p_original_text = perturb_texts(args, mask_model, mask_tokenizer, [original_text for _ in range(n_perturbations)])
assert len(p_sampled_text) == n_perturbations, f"Expected {n_perturbations} perturbed samples, got {len(p_sampled_text)}"
assert len(p_original_text) == n_perturbations, f"Expected {n_perturbations} perturbed samples, got {len(p_original_text)}"
# result
perturbs.append({
"original": original_text,
"sampled": sampled_text,
"perturbed_sampled": p_sampled_text,
"perturbed_original": p_original_text
})
save_data(f'{args.dataset_file}.{args.mask_filling_model_name}.{name}', args, perturbs)
def experiment(args):
n_perturbations = args.n_perturbations
name = f'perturbation_{n_perturbations}'
perturb_file = f'{args.dataset_file}.{args.mask_filling_model_name}.{name}.raw_data.json'
if os.path.exists(perturb_file):
print(f'Use existing perturbation file: {perturb_file}')
else:
generate_perturbs(args)
# load model
scoring_tokenizer = load_tokenizer(args.scoring_model_name, args.dataset, args.cache_dir)
scoring_model = load_model(args.scoring_model_name, 'cpu', args.cache_dir)
scoring_model.eval()
scoring_model.to(args.device)
# load data
data = load_data(f'{args.dataset_file}.{args.mask_filling_model_name}.{name}')
n_samples = len(data)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Evaluate
results = data
for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"):
original_text = results[idx]["original"]
sampled_text = results[idx]["sampled"]
perturbed_original = results[idx]["perturbed_original"]
perturbed_sampled = results[idx]["perturbed_sampled"]
# original text
original_ll = get_ll(args, scoring_model, scoring_tokenizer, original_text)
p_original_ll = get_lls(args, scoring_model, scoring_tokenizer, perturbed_original)
# sampled text
sampled_ll = get_ll(args, scoring_model, scoring_tokenizer, sampled_text)
p_sampled_ll = get_lls(args, scoring_model, scoring_tokenizer, perturbed_sampled)
# result
results[idx]["original_ll"] = original_ll
results[idx]["sampled_ll"] = sampled_ll
results[idx]["all_perturbed_sampled_ll"] = p_sampled_ll
results[idx]["all_perturbed_original_ll"] = p_original_ll
results[idx]["perturbed_sampled_ll"] = np.mean(p_sampled_ll)
results[idx]["perturbed_original_ll"] = np.mean(p_original_ll)
results[idx]["perturbed_sampled_ll_std"] = np.std(p_sampled_ll) if len(p_sampled_ll) > 1 else 1
results[idx]["perturbed_original_ll_std"] = np.std(p_original_ll) if len(p_original_ll) > 1 else 1
# compute diffs with perturbed
predictions = {'real': [], 'samples': []}
for res in results:
if res['perturbed_original_ll_std'] == 0:
res['perturbed_original_ll_std'] = 1
print("WARNING: std of perturbed original is 0, setting to 1")
print(f"Number of unique perturbed original texts: {len(set(res['perturbed_original']))}")
print(f"Original text: {res['original']}")
if res['perturbed_sampled_ll_std'] == 0:
res['perturbed_sampled_ll_std'] = 1
print("WARNING: std of perturbed sampled is 0, setting to 1")
print(f"Number of unique perturbed sampled texts: {len(set(res['perturbed_sampled']))}")
print(f"Sampled text: {res['sampled']}")
predictions['real'].append((res['original_ll'] - res['perturbed_original_ll']) / res['perturbed_original_ll_std'])
predictions['samples'].append((res['sampled_ll'] - res['perturbed_sampled_ll']) / res['perturbed_sampled_ll_std'])
print(f"Real mean/std: {np.mean(predictions['real']):.2f}/{np.std(predictions['real']):.2f}, Samples mean/std: {np.mean(predictions['samples']):.2f}/{np.std(predictions['samples']):.2f}")
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}")
# results
results_file = f'{args.output_file}.{name}.json'
results = {
'name': name,
'info': {
'pct_words_masked': args.pct_words_masked,
'span_length': args.span_length,
'n_perturbations': args.n_perturbations,
'n_samples': n_samples,
},
'predictions': predictions,
'raw_results': results,
'metrics': {
'roc_auc': roc_auc,
'fpr': fpr,
'tpr': tpr,
},
'pr_metrics': {
'pr_auc': pr_auc,
'precision': p,
'recall': r,
},
'loss': 1 - pr_auc,
}
with open(results_file, 'w') as fout:
json.dump(results, fout)
print(f'Results written into {results_file}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2")
parser.add_argument('--dataset', type=str, default="xsum")
parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2")
parser.add_argument('--pct_words_masked', type=float, default=0.3) # pct masked is actually pct_words_masked * (span_length / (span_length + 2 * buffer_size))
parser.add_argument('--mask_top_p', type=float, default=1.0)
parser.add_argument('--span_length', type=int, default=2)
parser.add_argument('--n_perturbations', type=int, default=10)
parser.add_argument('--scoring_model_name', type=str, default="gpt2")
parser.add_argument('--mask_filling_model_name', type=str, default="t5-small")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--device', type=str, default="cuda")
parser.add_argument('--cache_dir', type=str, default="../cache")
args = parser.parse_args()
experiment(args)
|