Spaces:
Sleeping
Sleeping
# Copyright (c) Guangsheng Bao. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import tqdm | |
import argparse | |
import json | |
from data_builder import load_data | |
from model import load_tokenizer, load_model | |
from metrics import get_roc_metrics, get_precision_recall_metrics | |
def get_likelihood(logits, labels): | |
assert logits.shape[0] == 1 | |
assert labels.shape[0] == 1 | |
logits = logits.view(-1, logits.shape[-1]) | |
labels = labels.view(-1) | |
log_probs = torch.nn.functional.log_softmax(logits, dim=-1) | |
log_likelihood = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)).squeeze(-1) | |
return log_likelihood.mean().item() | |
def get_rank(logits, labels): | |
assert logits.shape[0] == 1 | |
assert labels.shape[0] == 1 | |
# get rank of each label token in the model's likelihood ordering | |
matches = (logits.argsort(-1, descending=True) == labels.unsqueeze(-1)).nonzero() | |
assert matches.shape[1] == 3, f"Expected 3 dimensions in matches tensor, got {matches.shape}" | |
ranks, timesteps = matches[:, -1], matches[:, -2] | |
# make sure we got exactly one match for each timestep in the sequence | |
assert (timesteps == torch.arange(len(timesteps)).to(timesteps.device)).all(), "Expected one match per timestep" | |
ranks = ranks.float() + 1 # convert to 1-indexed rank | |
return -ranks.mean().item() | |
def get_logrank(logits, labels): | |
assert logits.shape[0] == 1 | |
assert labels.shape[0] == 1 | |
# get rank of each label token in the model's likelihood ordering | |
matches = (logits.argsort(-1, descending=True) == labels.unsqueeze(-1)).nonzero() | |
assert matches.shape[1] == 3, f"Expected 3 dimensions in matches tensor, got {matches.shape}" | |
ranks, timesteps = matches[:, -1], matches[:, -2] | |
# make sure we got exactly one match for each timestep in the sequence | |
assert (timesteps == torch.arange(len(timesteps)).to(timesteps.device)).all(), "Expected one match per timestep" | |
ranks = ranks.float() + 1 # convert to 1-indexed rank | |
ranks = torch.log(ranks) | |
return -ranks.mean().item() | |
def get_entropy(logits, labels): | |
assert logits.shape[0] == 1 | |
assert labels.shape[0] == 1 | |
entropy = F.softmax(logits, dim=-1) * F.log_softmax(logits, dim=-1) | |
entropy = -entropy.sum(-1) | |
return entropy.mean().item() | |
def experiment(args): | |
# load model | |
scoring_tokenizer = load_tokenizer(args.scoring_model_name, args.dataset, args.cache_dir) | |
scoring_model = load_model(args.scoring_model_name, args.device, args.cache_dir) | |
scoring_model.eval() | |
# load data | |
data = load_data(args.dataset_file) | |
n_samples = len(data["sampled"]) | |
# eval criterions | |
criterion_fns = {'likelihood': get_likelihood, | |
'rank': get_rank, | |
'logrank': get_logrank, | |
'entropy': get_entropy} | |
for name in criterion_fns: | |
criterion_fn = criterion_fns[name] | |
torch.manual_seed(args.seed) | |
np.random.seed(args.seed) | |
eval_results = [] | |
for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"): | |
original_text = data["original"][idx] | |
sampled_text = data["sampled"][idx] | |
# original text | |
tokenized = scoring_tokenizer(original_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device) | |
labels = tokenized.input_ids[:, 1:] | |
with torch.no_grad(): | |
logits = scoring_model(**tokenized).logits[:, :-1] | |
original_crit = criterion_fn(logits, labels) | |
# sampled text | |
tokenized = scoring_tokenizer(sampled_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device) | |
labels = tokenized.input_ids[:, 1:] | |
with torch.no_grad(): | |
logits = scoring_model(**tokenized).logits[:, :-1] | |
sampled_crit = criterion_fn(logits, labels) | |
# result | |
eval_results.append({"original": original_text, | |
"original_crit": original_crit, | |
"sampled": sampled_text, | |
"sampled_crit": sampled_crit}) | |
# compute prediction scores for real/sampled passages | |
predictions = {'real': [x["original_crit"] for x in eval_results], | |
'samples': [x["sampled_crit"] for x in eval_results]} | |
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples']) | |
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples']) | |
print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}") | |
# log results | |
results_file = f'{args.output_file}.{name}.json' | |
results = { 'name': f'{name}_threshold', | |
'info': {'n_samples': n_samples}, | |
'predictions': predictions, | |
'raw_results': eval_results, | |
'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr}, | |
'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r}, | |
'loss': 1 - pr_auc} | |
with open(results_file, 'w') as fout: | |
json.dump(results, fout) | |
print(f'Results written into {results_file}') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2") | |
parser.add_argument('--dataset', type=str, default="xsum") | |
parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2") | |
parser.add_argument('--scoring_model_name', type=str, default="gpt2") | |
parser.add_argument('--seed', type=int, default=0) | |
parser.add_argument('--device', type=str, default="cuda") | |
parser.add_argument('--cache_dir', type=str, default="../cache") | |
args = parser.parse_args() | |
experiment(args) | |