Spaces:
Sleeping
Sleeping
# Copyright (c) Guangsheng Bao. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os.path | |
import argparse | |
import json | |
import numpy as np | |
def save_lines(lines, file): | |
with open(file, 'w') as fout: | |
fout.write('\n'.join(lines)) | |
def get_auroc(result_file): | |
with open(result_file, 'r') as fin: | |
res = json.load(fin) | |
return res['metrics']['roc_auc'] | |
def get_fpr_tpr(result_file): | |
with open(result_file, 'r') as fin: | |
res = json.load(fin) | |
return res['metrics']['fpr'], res['metrics']['tpr'] | |
def report_main_results(args): | |
datasets = {'xsum': 'XSum', | |
'squad': 'SQuAD', | |
'writing': 'WritingPrompts'} | |
source_models = {'gpt2-xl': 'GPT-2', | |
'opt-2.7b': 'OPT-2.7', | |
'gpt-neo-2.7B': 'Neo-2.7', | |
'gpt-j-6B': 'GPT-J', | |
'gpt-neox-20b': 'NeoX'} | |
methods1 = {'likelihood': 'Likelihood', | |
'entropy': 'Entropy', | |
'logrank': 'LogRank', | |
'lrr': 'LRR', | |
'npr': 'NPR'} | |
methods2 = {'perturbation_100': 'DetectGPT', | |
'sampling_discrepancy': 'Fast-DetectGPT'} | |
def _get_method_aurocs(dataset, method, filter=''): | |
cols = [] | |
for model in source_models: | |
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json' | |
if os.path.exists(result_file): | |
auroc = get_auroc(result_file) | |
else: | |
auroc = 0.0 | |
cols.append(auroc) | |
cols.append(np.mean(cols)) | |
return cols | |
headers = ['Method'] + [source_models[model] for model in source_models] + ['Avg.'] | |
for dataset in datasets: | |
print('----') | |
print(datasets[dataset]) | |
print('----') | |
print(' '.join(headers)) | |
# basic methods | |
for method in methods1: | |
method_name = methods1[method] | |
cols = _get_method_aurocs(dataset, method) | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
# white-box comparison | |
results = {} | |
for method in methods2: | |
method_name = methods2[method] | |
cols = _get_method_aurocs(dataset, method) | |
results[method_name] = cols | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
cols = np.array(results['Fast-DetectGPT']) - np.array(results['DetectGPT']) | |
cols = [f'{col:.4f}' for col in cols] | |
print('(Diff)', ' '.join(cols)) | |
# black-box comparison | |
filters = {'perturbation_100': '.t5-3b_gpt-neo-2.7B', | |
'sampling_discrepancy': '.gpt-j-6B_gpt-neo-2.7B'} | |
results = {} | |
for method in methods2: | |
method_name = methods2[method] | |
cols = _get_method_aurocs(dataset, method, filters[method]) | |
results[method_name] = cols | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
cols = np.array(results['Fast-DetectGPT']) - np.array(results['DetectGPT']) | |
cols = [f'{col:.4f}' for col in cols] | |
print('(Diff)', ' '.join(cols)) | |
def report_main_ext_results(args): | |
datasets = {'xsum': 'XSum', | |
'squad': 'SQuAD', | |
'writing': 'WritingPrompts'} | |
source_models = {'bloom-7b1': 'BLOOM-7.1', | |
'opt-13b': 'OPT-13', | |
'llama-13b': 'Llama-13', | |
'llama2-13b': 'Llama2-13', | |
} | |
methods1 = {'likelihood': 'Likelihood', | |
'entropy': 'Entropy', | |
'logrank': 'LogRank', | |
'lrr': 'LRR', | |
'npr': 'NPR'} | |
methods2 = {'perturbation_100': 'DetectGPT', | |
'sampling_discrepancy': 'Fast-DetectGPT'} | |
def _get_method_aurocs(dataset, method, filter=''): | |
cols = [] | |
for model in source_models: | |
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json' | |
if os.path.exists(result_file): | |
auroc = get_auroc(result_file) | |
else: | |
auroc = 0.0 | |
cols.append(auroc) | |
cols.append(np.mean(cols)) | |
return cols | |
headers = ['Method'] + [source_models[model] for model in source_models] + ['Avg.'] | |
for dataset in datasets: | |
print('----') | |
print(datasets[dataset]) | |
print('----') | |
print(' '.join(headers)) | |
# basic methods | |
for method in methods1: | |
method_name = methods1[method] | |
cols = _get_method_aurocs(dataset, method) | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
# white-box comparison | |
results = {} | |
for method in methods2: | |
method_name = methods2[method] | |
cols = _get_method_aurocs(dataset, method) | |
results[method_name] = cols | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
cols = np.array(results['Fast-DetectGPT']) - np.array(results['DetectGPT']) | |
cols = [f'{col:.4f}' for col in cols] | |
print('(Diff)', ' '.join(cols)) | |
# black-box comparison | |
filters = {'perturbation_100': '.t5-3b_gpt-neo-2.7B', | |
'sampling_discrepancy': '.gpt-j-6B_gpt-neo-2.7B'} | |
results = {} | |
for method in methods2: | |
method_name = methods2[method] | |
cols = _get_method_aurocs(dataset, method, filters[method]) | |
results[method_name] = cols | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
cols = np.array(results['Fast-DetectGPT']) - np.array(results['DetectGPT']) | |
cols = [f'{col:.4f}' for col in cols] | |
print('(Diff)', ' '.join(cols)) | |
def report_refmodel_results(args): | |
datasets = {'xsum': 'XSum', | |
'squad': 'SQuAD', | |
'writing': 'WritingPrompts'} | |
source_models = {'gpt2-xl': 'GPT-2', | |
'gpt-neo-2.7B': 'Neo-2.7', | |
'gpt-j-6B': 'GPT-J'} | |
def _get_method_aurocs(method, ref_model=None): | |
cols = [] | |
for dataset in datasets: | |
for model in source_models: | |
filter = '' if ref_model is None or ref_model == model else f'.{ref_model}_{model}' | |
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json' | |
if os.path.exists(result_file): | |
auroc = get_auroc(result_file) | |
else: | |
auroc = 0.0 | |
cols.append(auroc) | |
cols.append(np.mean(cols)) | |
return cols | |
headers1 = ['----'] + list([datasets[d] for d in datasets]) | |
headers2 = ['Method'] + [source_models[model] for model in source_models] \ | |
+ [source_models[model] for model in source_models] \ | |
+ [source_models[model] for model in source_models] \ | |
+ ['Avg.'] | |
print(' '.join(headers1)) | |
print(' '.join(headers2)) | |
ref_models = [None, 'gpt2-xl', 'gpt-neo-2.7B', 'gpt-j-6B'] | |
for ref_model in ref_models: | |
method = 'sampling_discrepancy' | |
method_name = 'Fast-DetectGPT (*/*)' if ref_model is None else f'Fast-DetectGPT ({source_models[ref_model]}/*)' | |
cols = _get_method_aurocs(method, ref_model) | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
def report_chatgpt_gpt4_results(args): | |
datasets = {'xsum': 'XSum', | |
'writing': 'Writing', | |
'pubmed': 'PubMed'} | |
source_models = {'gpt-3.5-turbo': 'ChatGPT', | |
'gpt-4': 'GPT-4'} | |
score_models = { 't5-11b': 'T5-11B', | |
'gpt2-xl': 'GPT-2', | |
'opt-2.7b': 'OPT-2.7', | |
'gpt-neo-2.7B': 'Neo-2.7', | |
'gpt-j-6B': 'GPT-J', | |
'gpt-neox-20b': 'NeoX'} | |
methods1 = {'roberta-base-openai-detector': 'RoBERTa-base', | |
'roberta-large-openai-detector': 'RoBERTa-large'} | |
methods2 = {'likelihood': 'Likelihood', 'entropy': 'Entropy', 'logrank': 'LogRank'} | |
methods3 = {'lrr': 'LRR', 'npr': 'NPR', 'perturbation_100': 'DetectGPT', | |
'sampling_discrepancy_analytic': 'Fast'} | |
def _get_method_aurocs(method, filter=''): | |
results = [] | |
for model in source_models: | |
cols = [] | |
for dataset in datasets: | |
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json' | |
if os.path.exists(result_file): | |
auroc = get_auroc(result_file) | |
else: | |
auroc = 0.0 | |
cols.append(auroc) | |
cols.append(np.mean(cols)) | |
results.extend(cols) | |
return results | |
headers1 = ['--'] + [source_models[model] for model in source_models] | |
headers2 = ['Method'] + [datasets[dataset] for dataset in datasets] + ['Avg.'] \ | |
+ [datasets[dataset] for dataset in datasets] + ['Avg.'] | |
print(' '.join(headers1)) | |
print(' '.join(headers2)) | |
# supervised methods | |
for method in methods1: | |
method_name = methods1[method] | |
cols = _get_method_aurocs(method) | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
# zero-shot methods | |
filters2 = {'likelihood': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b'], | |
'entropy': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b'], | |
'logrank': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b']} | |
filters3 = {'lrr': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'], | |
'npr': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'], | |
'perturbation_100': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'], | |
'sampling_discrepancy_analytic': ['.gpt-j-6B_gpt2-xl', '.gpt-j-6B_gpt-neo-2.7B', '.gpt-j-6B_gpt-j-6B', '.gpt-neox-20b_gpt-neox-20b']} | |
for method in methods2: | |
for filter in filters2[method]: | |
setting = score_models[filter[1:]] | |
method_name = f'{methods2[method]}({setting})' | |
cols = _get_method_aurocs(method, filter) | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
for method in methods3: | |
for filter in filters3[method]: | |
setting = [score_models[model] for model in filter[1:].split('_')] | |
method_name = f'{methods3[method]}({setting[0]}/{setting[1]})' | |
cols = _get_method_aurocs(method, filter) | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
def report_gpt3_results(args): | |
datasets = {'xsum': 'XSum', | |
'writing': 'Writing', | |
'pubmed': 'PubMed'} | |
source_models = {'davinci': 'GPT-3'} | |
score_models = { 't5-11b': 'T5-11B', | |
'gpt2-xl': 'GPT-2', | |
'opt-2.7b': 'OPT-2.7', | |
'gpt-neo-2.7B': 'Neo-2.7', | |
'gpt-j-6B': 'GPT-J', | |
'gpt-neox-20b': 'NeoX'} | |
methods1 = {'roberta-base-openai-detector': 'RoBERTa-base', | |
'roberta-large-openai-detector': 'RoBERTa-large'} | |
methods2 = {'likelihood': 'Likelihood', 'entropy': 'Entropy', 'logrank': 'LogRank'} | |
methods3 = {'lrr': 'LRR', 'npr': 'NPR', 'perturbation_100': 'DetectGPT', | |
'sampling_discrepancy_analytic': 'Fast'} | |
def _get_method_aurocs(method, filter=''): | |
results = [] | |
for model in source_models: | |
cols = [] | |
for dataset in datasets: | |
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json' | |
if os.path.exists(result_file): | |
auroc = get_auroc(result_file) | |
else: | |
auroc = 0.0 | |
cols.append(auroc) | |
cols.append(np.mean(cols)) | |
results.extend(cols) | |
return results | |
headers1 = ['--'] + [source_models[model] for model in source_models] | |
headers2 = ['Method'] + [datasets[dataset] for dataset in datasets] + ['Avg.'] \ | |
+ [datasets[dataset] for dataset in datasets] + ['Avg.'] | |
print(' '.join(headers1)) | |
print(' '.join(headers2)) | |
# supervised methods | |
for method in methods1: | |
method_name = methods1[method] | |
cols = _get_method_aurocs(method) | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
# zero-shot methods | |
filters2 = {'likelihood': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b'], | |
'entropy': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b'], | |
'logrank': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b']} | |
filters3 = {'lrr': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'], | |
'npr': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'], | |
'perturbation_100': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'], | |
'sampling_discrepancy_analytic': ['.gpt-j-6B_gpt2-xl', '.gpt-j-6B_gpt-neo-2.7B', '.gpt-j-6B_gpt-j-6B', '.gpt-neox-20b_gpt-neox-20b']} | |
for method in methods2: | |
for filter in filters2[method]: | |
setting = score_models[filter[1:]] | |
method_name = f'{methods2[method]}({setting})' | |
cols = _get_method_aurocs(method, filter) | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
for method in methods3: | |
for filter in filters3[method]: | |
setting = [score_models[model] for model in filter[1:].split('_')] | |
method_name = f'{methods3[method]}({setting[0]}/{setting[1]})' | |
cols = _get_method_aurocs(method, filter) | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
def report_maxlen_trends(args): | |
datasets = {'xsum': 'XSum', | |
'writing': 'WritingPrompts'} | |
source_models = {'gpt-3.5-turbo': 'ChatGPT', | |
'gpt-4': 'GPT-4'} | |
score_models = {'t5-11b': 'T5-11B', | |
'gpt2-xl': 'GPT-2', | |
'opt-2.7b': 'OPT-2.7', | |
'gpt-neo-2.7B': 'Neo-2.7', | |
'gpt-j-6B': 'GPT-J', | |
'gpt-neox-20b': 'NeoX'} | |
methods1 = {'roberta-base-openai-detector': 'RoBERTa-base', | |
'roberta-large-openai-detector': 'RoBERTa-large'} | |
methods2 = {'likelihood': 'Likelihood'} | |
methods3 = {'perturbation_100': 'DetectGPT', | |
'sampling_discrepancy_analytic': 'Fast-Detect'} | |
maxlens = [30, 60, 90, 120, 150, 180] | |
def _get_method_aurocs(root_path, dataset, source_model, method, filter=''): | |
cols = [] | |
for maxlen in maxlens: | |
result_file = f'{root_path}/exp_maxlen{maxlen}/results/{dataset}_{source_model}{filter}.{method}.json' | |
if os.path.exists(result_file): | |
auroc = get_auroc(result_file) | |
else: | |
auroc = 0.0 | |
cols.append(auroc) | |
return cols | |
filters2 = {'likelihood': '.gpt-neo-2.7B'} | |
filters3 = {'perturbation_100': '.t5-11b_gpt-neo-2.7B', | |
'sampling_discrepancy_analytic': '.gpt-j-6B_gpt-neo-2.7B'} | |
headers = ['Method'] + [str(maxlen) for maxlen in maxlens] | |
print(' '.join(headers)) | |
# print table per model and dataset | |
results = {} | |
for model in source_models: | |
model_name = source_models[model] | |
for data in datasets: | |
data_name = datasets[data] | |
print('----') | |
print(f'{model_name} / {data_name}') | |
print('----') | |
for method in methods1: | |
method_name = methods1[method] | |
cols = _get_method_aurocs('.', data, model, method) | |
results[f'{model_name}_{data_name}_{method_name}'] = cols | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
for method in methods2: | |
filter = filters2[method] | |
setting = score_models[filter[1:]] | |
method_name = f'{methods2[method]}({setting})' | |
cols = _get_method_aurocs('.', data, model, method, filter) | |
results[f'{model_name}_{data_name}_{method_name}'] = cols | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
for method in methods3: | |
filter = filters3[method] | |
setting = [score_models[model] for model in filter[1:].split('_')] | |
method_name = f'{methods3[method]}({setting[0]}/{setting[1]})' | |
cols = _get_method_aurocs('.', data, model, method, filter) | |
results[f'{model_name}_{data_name}_{method_name}'] = cols | |
cols = [f'{col:.4f}' for col in cols] | |
print(method_name, ' '.join(cols)) | |
import json | |
json_file = './exp_analysis/maxlen_trends.json' | |
with open(json_file, 'w') as fout: | |
json.dump(results, fout) | |
print(f'Write to file {json_file}') | |
def report_auroc_curve(args): | |
datasets = {'xsum': 'XSum', | |
'writing': 'WritingPrompts'} | |
source_models = {'gpt-3.5-turbo': 'ChatGPT', | |
'gpt-4': 'GPT-4'} | |
score_models = {'t5-11b': 'T5-11B', | |
'gpt2-xl': 'GPT-2', | |
'opt-2.7b': 'OPT-2.7', | |
'gpt-neo-2.7B': 'Neo-2.7', | |
'gpt-j-6B': 'GPT-J', | |
'gpt-neox-20b': 'NeoX'} | |
methods1 = {'roberta-base-openai-detector': 'RoBERTa-base', | |
'roberta-large-openai-detector': 'RoBERTa-large'} | |
methods2 = {'likelihood': 'Likelihood'} | |
methods3 = {'perturbation_100': 'DetectGPT', | |
'sampling_discrepancy_analytic': 'Fast-Detect'} | |
def _get_method_fpr_tpr(root_path, dataset, source_model, method, filter=''): | |
maxlen = 180 | |
result_file = f'{root_path}/exp_maxlen{maxlen}/results/{dataset}_{source_model}{filter}.{method}.json' | |
if os.path.exists(result_file): | |
fpr, tpr = get_fpr_tpr(result_file) | |
else: | |
fpr, tpr = [], [] | |
assert len(fpr) == len(tpr) | |
return list(zip(fpr, tpr)) | |
filters2 = {'likelihood': '.gpt-neo-2.7B'} | |
filters3 = {'perturbation_100': '.t5-11b_gpt-neo-2.7B', | |
'sampling_discrepancy_analytic': '.gpt-j-6B_gpt-neo-2.7B'} | |
# print table per model and dataset | |
results = {} | |
for model in source_models: | |
model_name = source_models[model] | |
for data in datasets: | |
data_name = datasets[data] | |
print('----') | |
print(f'{model_name} / {data_name}') | |
print('----') | |
for method in methods1: | |
method_name = methods1[method] | |
cols = _get_method_fpr_tpr('.', data, model, method) | |
results[f'{model_name}_{data_name}_{method_name}'] = cols | |
cols = [f'({col[0]:.3f},{col[1]:.3f})' for col in cols] | |
print(method_name, ' '.join(cols)) | |
for method in methods2: | |
filter = filters2[method] | |
setting = score_models[filter[1:]] | |
method_name = f'{methods2[method]}({setting})' | |
cols = _get_method_fpr_tpr('.', data, model, method, filter) | |
results[f'{model_name}_{data_name}_{method_name}'] = cols | |
cols = [f'({col[0]:.3f},{col[1]:.3f})' for col in cols] | |
print(method_name, ' '.join(cols)) | |
for method in methods3: | |
filter = filters3[method] | |
setting = [score_models[model] for model in filter[1:].split('_')] | |
method_name = f'{methods3[method]}({setting[0]}/{setting[1]})' | |
cols = _get_method_fpr_tpr('.', data, model, method, filter) | |
results[f'{model_name}_{data_name}_{method_name}'] = cols | |
cols = [f'({col[0]:.3f},{col[1]:.3f})' for col in cols] | |
print(method_name, ' '.join(cols)) | |
import json | |
json_file = './exp_analysis/auroc_curve.json' | |
with open(json_file, 'w') as fout: | |
json.dump(results, fout) | |
print(f'Write to file {json_file}') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--result_path', type=str, default="./exp_main/results/") | |
parser.add_argument('--report_name', type=str, default="main_results") | |
args = parser.parse_args() | |
if args.report_name == 'main_results': | |
report_main_results(args) | |
elif args.report_name == 'main_ext_results': | |
report_main_ext_results(args) | |
elif args.report_name == 'chatgpt_gpt4_results': | |
report_chatgpt_gpt4_results(args) | |
elif args.report_name == 'gpt3_results': | |
report_gpt3_results(args) | |
elif args.report_name == 'maxlen_trends': | |
report_maxlen_trends(args) | |
elif args.report_name == 'auroc_curve': | |
report_auroc_curve(args) | |
elif args.report_name == 'refmodel_results': | |
report_refmodel_results(args) |