# Copyright (c) Guangsheng Bao. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os.path import numpy as np from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import re import torch import tqdm import argparse import json from data_builder import load_data, save_data from metrics import get_roc_metrics, get_precision_recall_metrics from model import load_tokenizer, load_model, get_model_fullname, from_pretrained # define regex to match all tokens, where * is an integer pattern = re.compile(r"") def load_mask_model(model_name, device, cache_dir): model_name = get_model_fullname(model_name) # mask filling t5 model print(f'Loading mask filling model {model_name}...') mask_model = from_pretrained(AutoModelForSeq2SeqLM, model_name, {}, cache_dir) mask_model = mask_model.to(device) return mask_model def load_mask_tokenizer(model_name, max_length, cache_dir): model_name = get_model_fullname(model_name) tokenizer = from_pretrained(AutoTokenizer, model_name, {'model_max_length': max_length}, cache_dir) return tokenizer def tokenize_and_mask(text, span_length, pct, ceil_pct=False): buffer_size = 1 tokens = text.split(' ') mask_string = '<<>>' n_spans = pct * len(tokens) / (span_length + buffer_size * 2) if ceil_pct: n_spans = np.ceil(n_spans) n_spans = int(n_spans) n_masks = 0 while n_masks < n_spans: start = np.random.randint(0, len(tokens) - span_length) end = start + span_length search_start = max(0, start - buffer_size) search_end = min(len(tokens), end + buffer_size) if mask_string not in tokens[search_start:search_end]: tokens[start:end] = [mask_string] n_masks += 1 # replace each occurrence of mask_string with , where NUM increments num_filled = 0 for idx, token in enumerate(tokens): if token == mask_string: tokens[idx] = f'' num_filled += 1 assert num_filled == n_masks, f"num_filled {num_filled} != n_masks {n_masks}" text = ' '.join(tokens) return text def count_masks(texts): return [len([x for x in text.split() if x.startswith("")[0] tokens = mask_tokenizer(texts, return_tensors="pt", padding=True).to(args.device) outputs = mask_model.generate(**tokens, max_length=150, do_sample=True, top_p=args.mask_top_p, num_return_sequences=1, eos_token_id=stop_id) return mask_tokenizer.batch_decode(outputs, skip_special_tokens=False) def extract_fills(texts): # remove from beginning of each text texts = [x.replace("", "").replace("", "").strip() for x in texts] # return the text in between each matched mask token extracted_fills = [pattern.split(x)[1:-1] for x in texts] # remove whitespace around each fill extracted_fills = [[y.strip() for y in x] for x in extracted_fills] return extracted_fills def apply_extracted_fills(masked_texts, extracted_fills): # split masked text into tokens, only splitting on spaces (not newlines) tokens = [x.split(' ') for x in masked_texts] n_expected = count_masks(masked_texts) # replace each mask token with the corresponding fill for idx, (text, fills, n) in enumerate(zip(tokens, extracted_fills, n_expected)): if len(fills) < n: tokens[idx] = [] else: for fill_idx in range(n): text[text.index(f"")] = fills[fill_idx] # join tokens back into text texts = [" ".join(x) for x in tokens] return texts def perturb_texts_(args, mask_model, mask_tokenizer, texts, ceil_pct=False): span_length = args.span_length pct = args.pct_words_masked masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for x in texts] raw_fills = replace_masks(args, mask_model, mask_tokenizer, masked_texts) extracted_fills = extract_fills(raw_fills) perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills) # Handle the fact that sometimes the model doesn't generate the right number of fills and we have to try again attempts = 1 while '' in perturbed_texts: idxs = [idx for idx, x in enumerate(perturbed_texts) if x == ''] print(f'WARNING: {len(idxs)} texts have no fills. Trying again [attempt {attempts}].') masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for idx, x in enumerate(texts) if idx in idxs] raw_fills = replace_masks(args, mask_model, mask_tokenizer, masked_texts) extracted_fills = extract_fills(raw_fills) new_perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills) for idx, x in zip(idxs, new_perturbed_texts): perturbed_texts[idx] = x attempts += 1 return perturbed_texts def perturb_texts(args, mask_model, mask_tokenizer, texts, ceil_pct=False): chunk_size = 10 outputs = [] for i in range(0, len(texts), chunk_size): outputs.extend(perturb_texts_(args, mask_model, mask_tokenizer, texts[i:i + chunk_size], ceil_pct=ceil_pct)) return outputs # Get the log likelihood of each text under the base_model def get_ll(args, scoring_model, scoring_tokenizer, text): with torch.no_grad(): tokenized = scoring_tokenizer(text, return_tensors="pt", return_token_type_ids=False).to(args.device) labels = tokenized.input_ids return -scoring_model(**tokenized, labels=labels).loss.item() def get_lls(args, scoring_model, scoring_tokenizer, texts): return [get_ll(args, scoring_model, scoring_tokenizer, text) for text in texts] def generate_perturbs(args): n_perturbations = args.n_perturbations name = f'perturbation_{n_perturbations}' # load model mask_model = load_mask_model(args.mask_filling_model_name, args.device, args.cache_dir) mask_model.eval() try: n_positions = mask_model.config.n_positions except AttributeError: n_positions = 512 mask_tokenizer = load_mask_tokenizer(args.mask_filling_model_name, n_positions, args.cache_dir) # load data data = load_data(args.dataset_file) n_samples = len(data["sampled"]) torch.manual_seed(args.seed) np.random.seed(args.seed) # generate perturb samples perturbs = [] for idx in tqdm.tqdm(range(n_samples), desc=f"Perturb text"): original_text = data["original"][idx] sampled_text = data["sampled"][idx] # perturb p_sampled_text = perturb_texts(args, mask_model, mask_tokenizer, [sampled_text for _ in range(n_perturbations)]) p_original_text = perturb_texts(args, mask_model, mask_tokenizer, [original_text for _ in range(n_perturbations)]) assert len(p_sampled_text) == n_perturbations, f"Expected {n_perturbations} perturbed samples, got {len(p_sampled_text)}" assert len(p_original_text) == n_perturbations, f"Expected {n_perturbations} perturbed samples, got {len(p_original_text)}" # result perturbs.append({ "original": original_text, "sampled": sampled_text, "perturbed_sampled": p_sampled_text, "perturbed_original": p_original_text }) save_data(f'{args.dataset_file}.{args.mask_filling_model_name}.{name}', args, perturbs) def experiment(args): n_perturbations = args.n_perturbations name = f'perturbation_{n_perturbations}' perturb_file = f'{args.dataset_file}.{args.mask_filling_model_name}.{name}.raw_data.json' if os.path.exists(perturb_file): print(f'Use existing perturbation file: {perturb_file}') else: generate_perturbs(args) # load model scoring_tokenizer = load_tokenizer(args.scoring_model_name, args.dataset, args.cache_dir) scoring_model = load_model(args.scoring_model_name, 'cpu', args.cache_dir) scoring_model.eval() scoring_model.to(args.device) # load data data = load_data(f'{args.dataset_file}.{args.mask_filling_model_name}.{name}') n_samples = len(data) torch.manual_seed(args.seed) np.random.seed(args.seed) # Evaluate results = data for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"): original_text = results[idx]["original"] sampled_text = results[idx]["sampled"] perturbed_original = results[idx]["perturbed_original"] perturbed_sampled = results[idx]["perturbed_sampled"] # original text original_ll = get_ll(args, scoring_model, scoring_tokenizer, original_text) p_original_ll = get_lls(args, scoring_model, scoring_tokenizer, perturbed_original) # sampled text sampled_ll = get_ll(args, scoring_model, scoring_tokenizer, sampled_text) p_sampled_ll = get_lls(args, scoring_model, scoring_tokenizer, perturbed_sampled) # result results[idx]["original_ll"] = original_ll results[idx]["sampled_ll"] = sampled_ll results[idx]["all_perturbed_sampled_ll"] = p_sampled_ll results[idx]["all_perturbed_original_ll"] = p_original_ll results[idx]["perturbed_sampled_ll"] = np.mean(p_sampled_ll) results[idx]["perturbed_original_ll"] = np.mean(p_original_ll) results[idx]["perturbed_sampled_ll_std"] = np.std(p_sampled_ll) if len(p_sampled_ll) > 1 else 1 results[idx]["perturbed_original_ll_std"] = np.std(p_original_ll) if len(p_original_ll) > 1 else 1 # compute diffs with perturbed predictions = {'real': [], 'samples': []} for res in results: if res['perturbed_original_ll_std'] == 0: res['perturbed_original_ll_std'] = 1 print("WARNING: std of perturbed original is 0, setting to 1") print(f"Number of unique perturbed original texts: {len(set(res['perturbed_original']))}") print(f"Original text: {res['original']}") if res['perturbed_sampled_ll_std'] == 0: res['perturbed_sampled_ll_std'] = 1 print("WARNING: std of perturbed sampled is 0, setting to 1") print(f"Number of unique perturbed sampled texts: {len(set(res['perturbed_sampled']))}") print(f"Sampled text: {res['sampled']}") predictions['real'].append((res['original_ll'] - res['perturbed_original_ll']) / res['perturbed_original_ll_std']) predictions['samples'].append((res['sampled_ll'] - res['perturbed_sampled_ll']) / res['perturbed_sampled_ll_std']) print(f"Real mean/std: {np.mean(predictions['real']):.2f}/{np.std(predictions['real']):.2f}, Samples mean/std: {np.mean(predictions['samples']):.2f}/{np.std(predictions['samples']):.2f}") fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples']) p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples']) print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}") # results results_file = f'{args.output_file}.{name}.json' results = { 'name': name, 'info': { 'pct_words_masked': args.pct_words_masked, 'span_length': args.span_length, 'n_perturbations': args.n_perturbations, 'n_samples': n_samples, }, 'predictions': predictions, 'raw_results': results, 'metrics': { 'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr, }, 'pr_metrics': { 'pr_auc': pr_auc, 'precision': p, 'recall': r, }, 'loss': 1 - pr_auc, } with open(results_file, 'w') as fout: json.dump(results, fout) print(f'Results written into {results_file}') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2") parser.add_argument('--dataset', type=str, default="xsum") parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2") parser.add_argument('--pct_words_masked', type=float, default=0.3) # pct masked is actually pct_words_masked * (span_length / (span_length + 2 * buffer_size)) parser.add_argument('--mask_top_p', type=float, default=1.0) parser.add_argument('--span_length', type=int, default=2) parser.add_argument('--n_perturbations', type=int, default=10) parser.add_argument('--scoring_model_name', type=str, default="gpt2") parser.add_argument('--mask_filling_model_name', type=str, default="t5-small") parser.add_argument('--seed', type=int, default=0) parser.add_argument('--device', type=str, default="cuda") parser.add_argument('--cache_dir', type=str, default="../cache") args = parser.parse_args() experiment(args)