Aaron Mueller
debugging
d162626
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, AutoEvalColumnMultimodal, Tasks, TasksMultimodal
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_track (uid)
full_model: str # org/model (name of model)
repo_id: str # org/model (path to model on HF)
track: str
org: str
model: str
revision: str # commit hash, "" if main
results: dict
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
track = data.get("track")
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
repo_id = config.get("hf_repo", config.get("hf_repo", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
else:
org = org_and_model[0]
model = org_and_model[1]
full_model = "/".join(org_and_model)
eval_name = "_".join(org_and_model) + f"_{track}"
still_on_hub, _, model_config = is_model_on_hub(
repo_id, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
def _get_task_results(task):
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
if accs.size == 0 or any([acc is None for acc in accs]):
return None
mean_acc = np.mean(accs) * 100.0
return mean_acc
# Extract results available in this file (some results are split in several files)
results = {}
if track.lower() == "multimodal":
for task in TasksMultimodal:
task = task.value
task_result = _get_task_results(task)
if task_result is not None:
results[task.benchmark] = task_result
else:
for task in Tasks:
task = task.value
task_result = _get_task_results(task)
if task_result is not None:
results[task.benchmark] = task_result
return self(
eval_name=eval_name,
full_model=full_model,
repo_id=repo_id,
track=track,
org=org,
model=model,
results=results,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.track)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
eval_column = AutoEvalColumnMultimodal if self.track.lower() == "multimodal" else AutoEvalColumn
vision_tasks = ("VQA", "Winoground", "DevBench", "vqa", "winoground", "devbench")
num_text_tasks = len(Tasks)
text_average = sum([v for k, v in self.results.items() if v is not None and k not in vision_tasks]) / num_text_tasks
if self.still_on_hub:
model_display_name = make_clickable_model(self.repo_id, self.full_model)
else:
model_display_name = self.full_model
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
eval_column.model.name: model_display_name,
eval_column.hf_repo.name: self.repo_id,
eval_column.revision.name: self.revision,
eval_column.text_average.name: text_average,
eval_column.still_on_hub.name: self.still_on_hub,
}
if self.track.lower() == "multimodal":
taskset = TasksMultimodal
num_vision_tasks = len(TasksMultimodal) - len(Tasks)
vision_average = sum([v for k, v in self.results.items() if v is not None and k in vision_tasks]) / num_vision_tasks
data_dict[eval_column.vision_average.name] = vision_average
else:
taskset = Tasks
for task in taskset:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name, track):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (track)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results