from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.decomposition import PCA from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression def select_features_pca(df, n_components): df_numeric = df.select_dtypes(include=[float, int]) imputer = SimpleImputer(strategy='mean') df_imputed = imputer.fit_transform(df_numeric) scaler = StandardScaler() df_scaled = scaler.fit_transform(df_imputed) pca = PCA(n_components=n_components) components = pca.fit_transform(df_scaled) feature_names = df_numeric.columns important_features = feature_names[:n_components] return df[important_features], important_features def select_features_rfe(df, n_features_to_select): df_numeric = df.select_dtypes(include=[float, int]) imputer = SimpleImputer(strategy='mean') df_imputed = imputer.fit_transform(df_numeric) scaler = StandardScaler() df_scaled = scaler.fit_transform(df_imputed) model = LinearRegression() rfe = RFE(estimator=model, n_features_to_select=n_features_to_select) rfe.fit(df_scaled, df_scaled[:, 0]) important_features = [df_numeric.columns[i] for i in range(len(rfe.support_)) if rfe.support_[i]] return df[important_features], important_features def select_features_rf(df, n_features_to_select): df_numeric = df.select_dtypes(include=[float, int]) imputer = SimpleImputer(strategy='mean') df_imputed = imputer.fit_transform(df_numeric) scaler = StandardScaler() df_scaled = scaler.fit_transform(df_imputed) model = RandomForestRegressor() model.fit(df_scaled, df_scaled[:, 0]) importances = model.feature_importances_ indices = importances.argsort()[-n_features_to_select:][::-1] important_features = [df_numeric.columns[i] for i in indices] return df[important_features], important_features