from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.preprocessing import StandardScaler import streamlit as st import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from sklearn.decomposition import PCA def perform_clustering(df, n_clusters): df = df.dropna() scaler = StandardScaler() df_value_scaled = scaler.fit_transform(df) # Apply KMeans with the selected number of clusters model = KMeans(n_clusters=n_clusters, random_state=42) model.fit(df_value_scaled) labels = model.predict(df_value_scaled) score = silhouette_score(df_value_scaled, labels) df['Cluster'] = labels return df, score, df_value_scaled, labels, model def plot_clusters(df_value_scaled, labels, new_data_point=None): pca = PCA(n_components=2) components = pca.fit_transform(df_value_scaled) df_components = pd.DataFrame(data=components, columns=['PC1', 'PC2']) df_components['Cluster'] = labels plt.figure(figsize=(10, 6)) sns.scatterplot(x='PC1', y='PC2', hue='Cluster', data=df_components, palette='viridis', s=100, alpha=0.7) # Plot new data point if provided if new_data_point is not None: plt.scatter(new_data_point[:, 0], new_data_point[:, 1], color='red', marker='o', s=100, label='New Data Point') plt.title('Cluster Visualization') plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.legend(title='Cluster') st.pyplot(plt)