import streamlit as st import random from app_config import SYSTEM_PROMPT, NLP_MODEL_NAME, NUMBER_OF_VECTORS_FOR_RAG, NLP_MODEL_TEMPERATURE, NLP_MODEL_MAX_TOKENS, VECTOR_MAX_TOKENS, my_vector_store, chat, tiktoken_len from langchain.memory import ConversationSummaryBufferMemory from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from langchain.chains.summarize import load_summarize_chain from langchain.prompts import PromptTemplate from langchain_groq import ChatGroq from dotenv import load_dotenv from pathlib import Path import os env_path = Path('.') / '.env' load_dotenv(dotenv_path=env_path) # Initialize vector store and LLM outside session state retriever = my_vector_store.as_retriever(k=NUMBER_OF_VECTORS_FOR_RAG) llm = ChatGroq(temperature=NLP_MODEL_TEMPERATURE, groq_api_key=str(os.getenv('GROQ_API_KEY')), model_name=NLP_MODEL_NAME) def response_generator(prompt: str) -> str: try: docs = retriever.invoke(prompt) my_context = [doc.page_content for doc in docs] my_context = '\n\n'.join(my_context) system_message = SystemMessage(content=SYSTEM_PROMPT.format(context=my_context, previous_message_summary=st.session_state.rag_memory.moving_summary_buffer)) print(system_message) chat_messages = (system_message + st.session_state.rag_memory.chat_memory.messages + HumanMessage(content=prompt)).messages print("total tokens: ", tiktoken_len(str(chat_messages))) response = llm.invoke(chat_messages) return response.content except Exception as error: print(error, "ERROR") return "Oops! something went wrong, please try again." st.markdown( """ """, unsafe_allow_html=True, ) # Initialize session state if "messages" not in st.session_state: st.session_state.messages = [{"role": "system", "content": SYSTEM_PROMPT}] if "rag_memory" not in st.session_state: st.session_state.rag_memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=5000) if "retriever" not in st.session_state: st.session_state.retriever = retriever st.title("Insurance Bot") container = st.container(height=600) for message in st.session_state.messages: if message["role"] != "system": with container.chat_message(message["role"]): st.write(message["content"]) if prompt := st.chat_input("Enter your query here... "): with container.chat_message("user"): st.write(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) with container.chat_message("assistant"): response = response_generator(prompt=prompt) print("******************************************************** Response ********************************************************") print("MY RESPONSE IS:", response) st.write(response) print("Response is:", response) st.session_state.rag_memory.save_context({'input': prompt}, {'output': response}) st.session_state.messages.append({"role": "assistant", "content": response})