Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,18 +7,17 @@ import category_encoders as ce
|
|
7 |
import umap
|
8 |
import matplotlib.pyplot as plt
|
9 |
from sklearn.preprocessing import StandardScaler
|
10 |
-
|
11 |
-
import
|
12 |
-
import io
|
13 |
-
import base64
|
14 |
|
15 |
class DataAnalyzer:
|
16 |
def __init__(self):
|
17 |
self.temp_dir = tempfile.mkdtemp()
|
18 |
self.df = None
|
|
|
19 |
|
20 |
def generate_sweetviz_report(self, df):
|
21 |
-
self.df = df
|
22 |
report = sv.analyze(df)
|
23 |
report_path = os.path.join(self.temp_dir, "report.html")
|
24 |
report.show_html(report_path, open_browser=False)
|
@@ -41,14 +40,64 @@ class DataAnalyzer:
|
|
41 |
os.remove(report_path)
|
42 |
return html_with_table
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def encode_and_visualize(self, column_name, encoder_type='binary'):
|
45 |
if self.df is None or column_name not in self.df.columns:
|
46 |
return None
|
47 |
|
48 |
-
# Create DataFrame with only the selected column
|
49 |
df_subset = self.df[[column_name]].copy()
|
50 |
|
51 |
-
# Select encoder
|
52 |
encoders = {
|
53 |
'binary': ce.BinaryEncoder(),
|
54 |
'onehot': ce.OneHotEncoder(),
|
@@ -57,15 +106,11 @@ class DataAnalyzer:
|
|
57 |
}
|
58 |
|
59 |
encoder = encoders.get(encoder_type)
|
60 |
-
|
61 |
-
# Encode data
|
62 |
encoded_df = encoder.fit_transform(df_subset)
|
63 |
|
64 |
-
# Scale the encoded features
|
65 |
scaler = StandardScaler()
|
66 |
scaled_data = scaler.fit_transform(encoded_df)
|
67 |
|
68 |
-
# Apply UMAP
|
69 |
reducer = umap.UMAP(
|
70 |
n_neighbors=15,
|
71 |
min_dist=0.1,
|
@@ -75,7 +120,6 @@ class DataAnalyzer:
|
|
75 |
|
76 |
embedding = reducer.fit_transform(scaled_data)
|
77 |
|
78 |
-
# Create visualization
|
79 |
plt.figure(figsize=(10, 6))
|
80 |
scatter = plt.scatter(
|
81 |
embedding[:, 0],
|
@@ -90,7 +134,6 @@ class DataAnalyzer:
|
|
90 |
plt.xlabel('UMAP1')
|
91 |
plt.ylabel('UMAP2')
|
92 |
|
93 |
-
# Save plot to bytes
|
94 |
buf = io.BytesIO()
|
95 |
plt.savefig(buf, format='png', bbox_inches='tight')
|
96 |
plt.close()
|
@@ -109,6 +152,9 @@ def create_interface():
|
|
109 |
file_input = gr.File(label="Upload CSV")
|
110 |
report_html = gr.HTML()
|
111 |
|
|
|
|
|
|
|
112 |
with gr.TabItem("Categorical Analysis"):
|
113 |
with gr.Row():
|
114 |
column_dropdown = gr.Dropdown(
|
@@ -126,29 +172,36 @@ def create_interface():
|
|
126 |
|
127 |
def process_file(file):
|
128 |
if file is None:
|
129 |
-
return None, gr.Dropdown(choices=[])
|
130 |
|
131 |
try:
|
132 |
df = pd.read_csv(file.name)
|
133 |
-
# Get categorical columns
|
134 |
cat_columns = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
except Exception as e:
|
137 |
-
return f"Error
|
138 |
|
139 |
def update_plot(column, encoder_type):
|
140 |
if column is None:
|
141 |
return None
|
142 |
try:
|
143 |
-
|
144 |
-
return plot_bytes
|
145 |
except Exception as e:
|
146 |
return None
|
147 |
|
148 |
file_input.change(
|
149 |
fn=process_file,
|
150 |
inputs=[file_input],
|
151 |
-
outputs=[report_html, column_dropdown]
|
152 |
)
|
153 |
|
154 |
column_dropdown.change(
|
|
|
7 |
import umap
|
8 |
import matplotlib.pyplot as plt
|
9 |
from sklearn.preprocessing import StandardScaler
|
10 |
+
from autoviz.AutoViz_Class import AutoViz_Class
|
11 |
+
import shutil
|
|
|
|
|
12 |
|
13 |
class DataAnalyzer:
|
14 |
def __init__(self):
|
15 |
self.temp_dir = tempfile.mkdtemp()
|
16 |
self.df = None
|
17 |
+
self.AV = AutoViz_Class()
|
18 |
|
19 |
def generate_sweetviz_report(self, df):
|
20 |
+
self.df = df
|
21 |
report = sv.analyze(df)
|
22 |
report_path = os.path.join(self.temp_dir, "report.html")
|
23 |
report.show_html(report_path, open_browser=False)
|
|
|
40 |
os.remove(report_path)
|
41 |
return html_with_table
|
42 |
|
43 |
+
def generate_autoviz_report(self, df):
|
44 |
+
"""Generate AutoViz report and return the HTML content"""
|
45 |
+
# Create a temporary directory for AutoViz output
|
46 |
+
viz_temp_dir = os.path.join(self.temp_dir, "autoviz")
|
47 |
+
if os.path.exists(viz_temp_dir):
|
48 |
+
shutil.rmtree(viz_temp_dir)
|
49 |
+
os.makedirs(viz_temp_dir)
|
50 |
+
|
51 |
+
try:
|
52 |
+
# Generate AutoViz report
|
53 |
+
dft = self.AV.AutoViz(
|
54 |
+
filename='',
|
55 |
+
sep=',',
|
56 |
+
depVar='',
|
57 |
+
dfte=df,
|
58 |
+
header=0,
|
59 |
+
verbose=0,
|
60 |
+
lowess=False,
|
61 |
+
chart_format='html',
|
62 |
+
max_rows_analyzed=150000,
|
63 |
+
save_plot_dir=viz_temp_dir
|
64 |
+
)
|
65 |
+
|
66 |
+
# Combine all HTML files into one
|
67 |
+
html_content = ""
|
68 |
+
for file in sorted(os.listdir(viz_temp_dir)):
|
69 |
+
if file.endswith('.html'):
|
70 |
+
with open(os.path.join(viz_temp_dir, file), 'r', encoding='utf-8') as f:
|
71 |
+
html_content += f.read() + "<br><hr><br>"
|
72 |
+
|
73 |
+
# Wrap the content in a scrollable div
|
74 |
+
html_with_table = f"""
|
75 |
+
<table width="100%" style="border-collapse: collapse;">
|
76 |
+
<tr>
|
77 |
+
<td style="padding: 20px; border: 1px solid #ddd;">
|
78 |
+
<div style="height: 800px; overflow: auto;">
|
79 |
+
{html_content}
|
80 |
+
</div>
|
81 |
+
</td>
|
82 |
+
</tr>
|
83 |
+
</table>
|
84 |
+
"""
|
85 |
+
|
86 |
+
return html_with_table
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
return f"Error generating AutoViz report: {str(e)}"
|
90 |
+
finally:
|
91 |
+
# Clean up
|
92 |
+
if os.path.exists(viz_temp_dir):
|
93 |
+
shutil.rmtree(viz_temp_dir)
|
94 |
+
|
95 |
def encode_and_visualize(self, column_name, encoder_type='binary'):
|
96 |
if self.df is None or column_name not in self.df.columns:
|
97 |
return None
|
98 |
|
|
|
99 |
df_subset = self.df[[column_name]].copy()
|
100 |
|
|
|
101 |
encoders = {
|
102 |
'binary': ce.BinaryEncoder(),
|
103 |
'onehot': ce.OneHotEncoder(),
|
|
|
106 |
}
|
107 |
|
108 |
encoder = encoders.get(encoder_type)
|
|
|
|
|
109 |
encoded_df = encoder.fit_transform(df_subset)
|
110 |
|
|
|
111 |
scaler = StandardScaler()
|
112 |
scaled_data = scaler.fit_transform(encoded_df)
|
113 |
|
|
|
114 |
reducer = umap.UMAP(
|
115 |
n_neighbors=15,
|
116 |
min_dist=0.1,
|
|
|
120 |
|
121 |
embedding = reducer.fit_transform(scaled_data)
|
122 |
|
|
|
123 |
plt.figure(figsize=(10, 6))
|
124 |
scatter = plt.scatter(
|
125 |
embedding[:, 0],
|
|
|
134 |
plt.xlabel('UMAP1')
|
135 |
plt.ylabel('UMAP2')
|
136 |
|
|
|
137 |
buf = io.BytesIO()
|
138 |
plt.savefig(buf, format='png', bbox_inches='tight')
|
139 |
plt.close()
|
|
|
152 |
file_input = gr.File(label="Upload CSV")
|
153 |
report_html = gr.HTML()
|
154 |
|
155 |
+
with gr.TabItem("AutoViz Analysis"):
|
156 |
+
autoviz_html = gr.HTML()
|
157 |
+
|
158 |
with gr.TabItem("Categorical Analysis"):
|
159 |
with gr.Row():
|
160 |
column_dropdown = gr.Dropdown(
|
|
|
172 |
|
173 |
def process_file(file):
|
174 |
if file is None:
|
175 |
+
return None, None, gr.Dropdown(choices=[])
|
176 |
|
177 |
try:
|
178 |
df = pd.read_csv(file.name)
|
|
|
179 |
cat_columns = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
180 |
+
|
181 |
+
# Generate both reports
|
182 |
+
sweetviz_report = analyzer.generate_sweetviz_report(df)
|
183 |
+
autoviz_report = analyzer.generate_autoviz_report(df)
|
184 |
+
|
185 |
+
return (
|
186 |
+
sweetviz_report,
|
187 |
+
autoviz_report,
|
188 |
+
gr.Dropdown(choices=cat_columns)
|
189 |
+
)
|
190 |
except Exception as e:
|
191 |
+
return f"Error: {str(e)}", None, gr.Dropdown(choices=[])
|
192 |
|
193 |
def update_plot(column, encoder_type):
|
194 |
if column is None:
|
195 |
return None
|
196 |
try:
|
197 |
+
return analyzer.encode_and_visualize(column, encoder_type)
|
|
|
198 |
except Exception as e:
|
199 |
return None
|
200 |
|
201 |
file_input.change(
|
202 |
fn=process_file,
|
203 |
inputs=[file_input],
|
204 |
+
outputs=[report_html, autoviz_html, column_dropdown]
|
205 |
)
|
206 |
|
207 |
column_dropdown.change(
|