Spaces:
Running
on
T4
Running
on
T4
"""Converts Huggingface Causal LM to Prefix LM. | |
Conversion does lightweight surgery on a HuggingFace | |
Causal LM to convert it to a Prefix LM. | |
Prefix LMs accepts a `bidirectional_mask` input in `forward` | |
and treat the input prompt as the prefix in `generate`. | |
""" | |
import math | |
import warnings | |
from types import MethodType | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss | |
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom | |
from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom | |
from transformers.models.bloom.modeling_bloom import logging | |
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel | |
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM | |
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM | |
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM | |
from transformers.models.opt.modeling_opt import OPTForCausalLM | |
from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt | |
from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt | |
logger = logging.get_logger(__name__) | |
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM) | |
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM] | |
def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES: | |
"""Converts a GPT-style Causal LM to a Prefix LM. | |
Supported HuggingFace model classes: | |
- `GPT2LMHeadModel` | |
- `GPTNeoForCausalLM` | |
- `GPTNeoXForCausalLM` | |
- `GPTJForCausalLM` | |
See `convert_hf_causal_lm_to_prefix_lm` for more details. | |
""" | |
if hasattr(model, '_prefix_lm_converted'): | |
return model | |
assert isinstance(model, _SUPPORTED_GPT_MODELS) | |
assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models' | |
def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]: | |
"""Helper that gets a list of the model's attention modules. | |
Each module has a `bias` buffer used for causal masking. The Prefix LM | |
conversion adds logic to dynamically manipulate these biases to support | |
Prefix LM attention masking. | |
""" | |
attn_modules = [] | |
if isinstance(model, GPTNeoXForCausalLM): | |
blocks = model.gpt_neox.layers | |
else: | |
blocks = model.transformer.h | |
for block in blocks: | |
if isinstance(model, GPTNeoForCausalLM): | |
if block.attn.attention_type != 'global': | |
continue | |
attn_module = block.attn.attention | |
elif isinstance(model, GPTNeoXForCausalLM): | |
attn_module = block.attention | |
else: | |
attn_module = block.attn | |
attn_modules.append(attn_module) | |
return attn_modules | |
setattr(model, '_original_forward', getattr(model, 'forward')) | |
setattr(model, '_original_generate', getattr(model, 'generate')) | |
def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None): | |
"""Wraps original forward to enable PrefixLM attention.""" | |
def call_og_forward(): | |
if isinstance(self, GPTNeoXForCausalLM): | |
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) | |
else: | |
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) | |
if bidirectional_mask is None: | |
return call_og_forward() | |
assert isinstance(bidirectional_mask, torch.Tensor) | |
attn_modules = _get_attn_modules(model) | |
(b, s) = bidirectional_mask.shape | |
max_length = attn_modules[0].bias.shape[-1] | |
if s > max_length: | |
raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).') | |
assert s <= max_length | |
if s < max_length: | |
pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device) | |
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1) | |
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1) | |
for attn_module in attn_modules: | |
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional) | |
output = call_og_forward() | |
for attn_module in attn_modules: | |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] | |
return output | |
def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]): | |
"""Wraps original generate to enable PrefixLM attention.""" | |
attn_modules = _get_attn_modules(model) | |
for attn_module in attn_modules: | |
attn_module.bias.data[:] = 1 | |
output = self._original_generate(*args, **kwargs) | |
for attn_module in attn_modules: | |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] | |
return output | |
setattr(model, 'forward', MethodType(forward, model)) | |
setattr(model, 'generate', MethodType(generate, model)) | |
setattr(model, '_prefix_lm_converted', True) | |
return model | |
def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM: | |
"""Converts a BLOOM Causal LM to a Prefix LM. | |
Supported HuggingFace model classes: | |
- `BloomForCausalLM` | |
See `convert_hf_causal_lm_to_prefix_lm` for more details. | |
""" | |
if hasattr(model, '_prefix_lm_converted'): | |
return model | |
assert isinstance(model, BloomForCausalLM) | |
assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models' | |
def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor: | |
combined_attention_mask = None | |
device = attention_mask.device | |
(_, src_length) = input_shape | |
if src_length > 1: | |
combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length) | |
if bidirectional_mask is not None: | |
assert attention_mask.shape == bidirectional_mask.shape | |
expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length) | |
combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask) | |
expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length) | |
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask | |
return combined_attention_mask | |
def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor: | |
num_heads = self.config.n_head | |
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) | |
base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32) | |
powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32) | |
slopes = torch.pow(base, powers) | |
if closest_power_of_2 != num_heads: | |
extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32) | |
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) | |
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32) | |
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) | |
qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1) | |
ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1) | |
diffs = qa - ka + key_length - query_length | |
diffs = -diffs.abs() | |
alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length) | |
alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length) | |
return alibi.to(dtype) | |
KeyValueT = Tuple[torch.Tensor, torch.Tensor] | |
def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: | |
if deprecated_arguments.pop('position_ids', False) is not False: | |
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning) | |
if len(deprecated_arguments) > 0: | |
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}') | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time') | |
elif input_ids is not None: | |
(batch_size, seq_length) = input_ids.shape | |
elif inputs_embeds is not None: | |
(batch_size, seq_length, _) = inputs_embeds.shape | |
else: | |
raise ValueError('You have to specify either input_ids or inputs_embeds') | |
if past_key_values is None: | |
past_key_values = tuple([None] * len(self.h)) | |
head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
hidden_states = self.word_embeddings_layernorm(inputs_embeds) | |
presents = () if use_cache else None | |
all_self_attentions = () if output_attentions else None | |
all_hidden_states = () if output_hidden_states else None | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values[0] is not None: | |
tmp = past_key_values[0][0] | |
past_key_values_length = tmp.shape[2] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if attention_mask is None: | |
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) | |
else: | |
attention_mask = attention_mask.to(hidden_states.device) | |
alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device) | |
causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length) | |
for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)): | |
if output_hidden_states: | |
hst = (hidden_states,) | |
all_hidden_states = all_hidden_states + hst | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...') | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) | |
return custom_forward | |
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i]) | |
else: | |
outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi) | |
hidden_states = outputs[0] | |
if use_cache is True: | |
presents = presents + (outputs[1],) | |
if output_attentions: | |
oa = (outputs[2 if use_cache else 1],) | |
all_self_attentions = all_self_attentions + oa | |
hidden_states = self.ln_f(hidden_states) | |
if output_hidden_states: | |
hst = (hidden_states,) | |
all_hidden_states = all_hidden_states + hst | |
if not return_dict: | |
return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)) | |
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions) | |
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer)) | |
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer)) | |
setattr(model.transformer, 'forward', MethodType(forward, model.transformer)) | |
KeyValueT = Tuple[torch.Tensor, torch.Tensor] | |
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: | |
"""Replacement forward method for BloomCausalLM.""" | |
if deprecated_arguments.pop('position_ids', False) is not False: | |
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning) | |
if len(deprecated_arguments) > 0: | |
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}') | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
(batch_size, seq_length, vocab_size) = shift_logits.shape | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions) | |
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict: | |
if past: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
bidirectional_mask = None | |
if past[0][0].shape[0] == input_ids.shape[0]: | |
past = self._convert_to_bloom_cache(past) | |
else: | |
bidirectional_mask = torch.ones_like(input_ids) | |
return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask} | |
setattr(model, 'forward', MethodType(forward, model)) | |
setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model)) | |
setattr(model, '_prefix_lm_converted', True) | |
return model | |
def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM: | |
"""Converts an OPT Causal LM to a Prefix LM. | |
Supported HuggingFace model classes: | |
- `OPTForCausalLM` | |
See `convert_hf_causal_lm_to_prefix_lm` for more details. | |
""" | |
if hasattr(model, '_prefix_lm_converted'): | |
return model | |
assert isinstance(model, OPTForCausalLM) | |
assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models' | |
setattr(model, '_original_forward', getattr(model, 'forward')) | |
setattr(model, '_original_generate', getattr(model, 'generate')) | |
model.model.decoder.bidirectional_mask = None | |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
if self.bidirectional_mask == 'g': | |
(bsz, src_length) = input_shape | |
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device) | |
else: | |
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device) | |
if self.bidirectional_mask is not None: | |
assert attention_mask.shape == self.bidirectional_mask.shape | |
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device) | |
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask) | |
if attention_mask is not None: | |
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device) | |
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
return combined_attention_mask | |
setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder)) | |
def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None): | |
def call_og_forward(): | |
return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) | |
if bidirectional_mask is None: | |
return call_og_forward() | |
self.model.decoder.bidirectional_mask = bidirectional_mask | |
try: | |
outputs = call_og_forward() | |
except: | |
self.model.decoder.bidirectional_mask = None | |
raise | |
self.model.decoder.bidirectional_mask = None | |
return outputs | |
def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]): | |
"""Wraps original generate to enable PrefixLM-style attention.""" | |
self.model.decoder.bidirectional_mask = 'g' | |
try: | |
output = self._original_generate(*args, **kwargs) | |
except: | |
self.model.decoder.bidirectional_mask = None | |
raise | |
self.model.decoder.bidirectional_mask = None | |
return output | |
setattr(model, 'forward', MethodType(forward, model)) | |
setattr(model, 'generate', MethodType(generate, model)) | |
setattr(model, '_prefix_lm_converted', True) | |
return model | |
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM) | |
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM] | |
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES: | |
"""Converts a HuggingFace Causal LM to a Prefix LM. | |
Supported HuggingFace model classes: | |
- `GPT2LMHeadModel` | |
- `GPTNeoForCausalLM` | |
- `GPTNeoXForCausalLM` | |
- `GPTJForCausalLM` | |
- `BloomForCausalLM` | |
- `OPTForCausalLM` | |
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the | |
`generate` method and/or select underlying methods depending on the model class. | |
These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask". | |
Notes on training: | |
To actually train the converted model as a Prefix LM, training batches will need to indicate | |
the prefix/target structure by including `bidirectional_mask` as part of the batch inputs. | |
**This is not a standard input and requires custom layers either within or after your dataloader.** | |
In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels` | |
such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`. | |
That is, the prefix portion of the sequence should not generate any loss. Loss should only be | |
generated by the target portion of the sequence. | |
Notes on `GPTNeoForCausalLM`: | |
To simplify the implementation, "global" and "local" attention layers are handled differently. | |
For "global" layers, we handle conversion as described above. For "local" layers, which use a | |
causal attention mask within a restricted local window, we do not alter the masking. | |
Notes on `forward` method conversion: | |
After conversion, the `forward` method will handle a new input, `bidirectional_mask`, | |
which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions | |
belonging to the prefix (prefix tokens can attend to one another bidirectionally), and | |
0 indicates token positions belonging to the target. | |
The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing | |
causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset | |
the causal masks before returning the result. | |
Notes on `generate` method conversion: | |
After conversion, the `generate` method will have the same signature but will internally | |
convert all causal masks to be purely bidirectional, call the original `generate` method, and | |
(where appropriate) reset the causal masks before returning the result. | |
This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token | |
"prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates | |
each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one | |
another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and | |
previously-generated tokens (also as expected in a Prefix LM). | |
To preserve the API, the original methods are renamed to `_original_forward` and | |
`_original_generate`, and replaced with new `forward` and `generate` methods that wrap | |
them, respectively. Although implementation details vary by model class. | |
""" | |
if isinstance(model, _SUPPORTED_GPT_MODELS): | |
return _convert_gpt_causal_lm_to_prefix_lm(model) | |
elif isinstance(model, BloomForCausalLM): | |
return _convert_bloom_causal_lm_to_prefix_lm(model) | |
elif isinstance(model, OPTForCausalLM): | |
return _convert_opt_causal_lm_to_prefix_lm(model) | |
else: | |
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}') | |
def add_bidirectional_mask_if_missing(batch: Dict[str, Any]): | |
"""Attempts to add bidirectional_mask to batch if missing. | |
Raises: | |
KeyError if bidirectional_mask is missing and can't be inferred | |
""" | |
if 'bidirectional_mask' not in batch: | |
if batch.get('mode', None) == 'icl_task': | |
batch['bidirectional_mask'] = batch['attention_mask'].clone() | |
for (i, continuation_indices) in enumerate(batch['continuation_indices']): | |
batch['bidirectional_mask'][i, continuation_indices] = 0 | |
elif 'labels' in batch and 'attention_mask' in batch: | |
batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask']) | |
else: | |
raise KeyError('No bidirectional_mask in batch and not sure how to construct one.') |