Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
from question_generation import question_generation_sampling
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
g1_tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
9 |
+
g1_model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
|
10 |
+
g2_tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-race-Distractor")
|
11 |
+
g2_model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-race-Distractor")
|
12 |
+
g1_model.eval()
|
13 |
+
g2_model.eval()
|
14 |
+
g1_model.to(device)
|
15 |
+
g2_model.to(device)
|
16 |
+
|
17 |
+
|
18 |
+
def generate_multiple_choice_question(
|
19 |
+
context
|
20 |
+
):
|
21 |
+
num_questions = 1
|
22 |
+
question_item = question_generation_sampling(
|
23 |
+
g1_model, g1_tokenizer,
|
24 |
+
g2_model, g2_tokenizer,
|
25 |
+
context, num_questions, device
|
26 |
+
)[0]
|
27 |
+
question = question_item['question']
|
28 |
+
options = question_item['options']
|
29 |
+
options[0] = f"{options[0]} [ANSWER]"
|
30 |
+
random.shuffle(options)
|
31 |
+
output_string = f"Question: {question}\n[A] {options[0]}\n[B] {options[1]}\n[C] {options[2]}\n[D] {options[3]}"
|
32 |
+
return output_string
|
33 |
+
|
34 |
+
demo = gr.Interface(
|
35 |
+
fn=generate_multiple_choice_question,
|
36 |
+
inputs=gr.Textbox(lines=8, placeholder="Context Here..."),
|
37 |
+
outputs=gr.Textbox(lines=5, placeholder="Question: \n[A] \n[B] \n[C] \n[D] "),
|
38 |
+
title="Multiple-choice Question Generator",
|
39 |
+
description="Provide some context (e.g. news article or any passage) in the context box and click **Submit**. The models currently support English only. This demo is a part of MQAG - https://github.com/potsawee/mqag0.",
|
40 |
+
allow_flagging='never'
|
41 |
+
)
|
42 |
+
demo.launch()
|