badrex's picture
add examples and update requirements.txt
23545c8
raw
history blame
2.9 kB
import gradio as gr
from transformers import pipeline
import numpy as np
import os
# Load the model
print("Loading model...")
model_id = "badrex/mms-300m-arabic-dialect-identifier"
try:
classifier = pipeline("audio-classification", model=model_id)
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
# Define dialect mapping
dialect_mapping = {
"MSA": "Modern Standard Arabic",
"Egyptian": "Egyptian Arabic",
"Gulf": "Gulf Arabic",
"Levantine": "Levantine Arabic",
"Maghrebi": "Maghrebi Arabic"
}
def predict_dialect(audio):
try:
# The audio input from Gradio is a tuple of (sample_rate, audio_array)
if audio is None:
return {"Error": 1.0}
sr, audio_array = audio
# Process the audio input
if len(audio_array.shape) > 1:
audio_array = audio_array.mean(axis=1) # Convert stereo to mono
print(f"Processing audio: sample rate={sr}, shape={audio_array.shape}")
# Classify the dialect
predictions = classifier({"sampling_rate": sr, "raw": audio_array})
# Format results for display
results = {}
for pred in predictions:
dialect_name = dialect_mapping.get(pred['label'], pred['label'])
results[dialect_name] = float(pred['score'])
return results
except Exception as e:
print(f"Error in prediction: {e}")
return {"Error": 1.0}
# Find example files
example_files = []
examples_dir = "examples"
if os.path.exists(examples_dir):
for filename in os.listdir(examples_dir):
if filename.endswith((".wav", ".mp3", ".ogg")):
example_files.append(os.path.join(examples_dir, filename))
print(f"Found {len(example_files)} example files")
else:
print("Examples directory not found")
# Examples with labels
examples = []
if example_files:
for file in example_files:
basename = os.path.basename(file)
dialect = basename.split("_")[0] if "_" in basename else basename.split(".")[0]
label = dialect_mapping.get(dialect, dialect.capitalize())
examples.append([file, f"{label} Sample"])
# Create the Gradio interface
demo = gr.Interface(
fn=predict_dialect,
inputs=gr.Audio(),
outputs=gr.Label(num_top_classes=5, label="Predicted Dialect"),
title="Arabic Dialect Identifier",
description="""This demo identifies Arabic dialects from speech audio.
Upload an audio file or record your voice speaking Arabic to see which dialect it matches.
The model identifies: Modern Standard Arabic (MSA), Egyptian, Gulf, Levantine, and Maghrebi dialects.""",
examples=examples if examples else None,
examples_per_page=5,
flagging_mode=None # Updated from allow_flagging
)
# Launch the app
demo.launch()