Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,414 +1,414 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
from prompts import prompts
|
4 |
-
from constants import JSON_SCHEMA_FOR_GPT, UPDATED_MODEL_ONLY_SCHEMA, JSON_SCHEMA_FOR_LOC_ONLY
|
5 |
-
from gpt import runAssistant, checkRunStatus, retrieveThread, createAssistant, saveFileOpenAI, startAssistantThread, \
|
6 |
-
create_chat_completion_request_open_ai_for_summary, addMessageToThread, create_image_completion_request_gpt
|
7 |
-
from summarizer import create_brand_html, create_langchain_openai_query
|
8 |
-
from theme import flux_generated_image, flux_generated_image_seed
|
9 |
-
import time
|
10 |
-
from PIL import Image
|
11 |
-
import io
|
12 |
-
|
13 |
-
|
14 |
-
def process_run(st, thread_id, assistant_id):
|
15 |
-
run_id = runAssistant(thread_id, assistant_id)
|
16 |
-
status = 'running'
|
17 |
-
while status != 'completed':
|
18 |
-
with st.spinner('. . .'):
|
19 |
-
time.sleep(20)
|
20 |
-
status = checkRunStatus(thread_id, run_id)
|
21 |
-
thread_messages = retrieveThread(thread_id)
|
22 |
-
for message in thread_messages:
|
23 |
-
if not message['role'] == 'user':
|
24 |
-
return message["content"]
|
25 |
-
else:
|
26 |
-
pass
|
27 |
-
|
28 |
-
|
29 |
-
def page1():
|
30 |
-
st.title("Upload Product")
|
31 |
-
st.markdown("<h2 style='color:#FF5733; font-weight:bold;'>Add a Product</h2>", unsafe_allow_html=True)
|
32 |
-
st.markdown("<p style='color:#444;'>Upload your product images, more images you upload better the AI learns</p>",
|
33 |
-
unsafe_allow_html=True)
|
34 |
-
uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True, key="uploaded_files_key")
|
35 |
-
product_description = st.text_area("Describe the product", value=st.session_state.get("product_description", ""))
|
36 |
-
col1, col2 = st.columns([1, 2])
|
37 |
-
with col1:
|
38 |
-
if st.button("Save"):
|
39 |
-
st.session_state['uploaded_files'] = uploaded_files
|
40 |
-
st.session_state['product_description'] = product_description
|
41 |
-
st.success("Product information saved!")
|
42 |
-
with col2:
|
43 |
-
if st.button("Add product and move to next page"):
|
44 |
-
if not uploaded_files:
|
45 |
-
st.warning("Please upload at least one image.")
|
46 |
-
elif not product_description:
|
47 |
-
st.warning("Please provide a description for the product.")
|
48 |
-
else:
|
49 |
-
st.session_state['uploaded_files'] = uploaded_files
|
50 |
-
st.session_state['product_description'] = product_description
|
51 |
-
st.session_state['page'] = "Page 2"
|
52 |
-
|
53 |
-
|
54 |
-
def page2():
|
55 |
-
st.title("Tell us about your shoot preference")
|
56 |
-
st.markdown("<h3 style='color:#444;'>What are you shooting today?</h3>", unsafe_allow_html=True)
|
57 |
-
shoot_type = st.radio("Select your shoot type:", ["Editorial", "Catalogue"], index=0)
|
58 |
-
st.session_state['shoot_type'] = shoot_type
|
59 |
-
brand_link = st.text_input("Add your brand link:", value=st.session_state.get("brand_link", ""))
|
60 |
-
st.session_state['brand_link'] = brand_link
|
61 |
-
if st.button("Get Brand Summary"):
|
62 |
-
if brand_link:
|
63 |
-
brand_summary_html = create_brand_html(brand_link)
|
64 |
-
brand_summary = create_langchain_openai_query(brand_summary_html)
|
65 |
-
st.session_state['brand_summary'] = brand_summary
|
66 |
-
st.success("Brand summary fetched!")
|
67 |
-
else:
|
68 |
-
st.warning("Please add a brand link.")
|
69 |
-
brand_summary_value = st.session_state.get('brand_summary', "")
|
70 |
-
editable_summary = st.text_area("Brand Summary:", value=brand_summary_value, height=100)
|
71 |
-
st.session_state['brand_summary'] = editable_summary
|
72 |
-
product_info = st.text_area("Tell us something about your product:", value=st.session_state.get("product_info", ""))
|
73 |
-
st.session_state['product_info'] = product_info
|
74 |
-
reference_images = st.file_uploader("Upload Reference Images", accept_multiple_files=True,
|
75 |
-
key="reference_images_key")
|
76 |
-
st.session_state['reference_images'] = reference_images
|
77 |
-
if st.button("Give Me Ideas"):
|
78 |
-
st.session_state['page'] = "Page 3"
|
79 |
-
|
80 |
-
|
81 |
-
def page3():
|
82 |
-
st.title("Scene Suggestions")
|
83 |
-
st.write("Based on your uploaded product and references!")
|
84 |
-
feedback = st.chat_input("Provide feedback:")
|
85 |
-
if not st.session_state.get("assistant_initialized", False):
|
86 |
-
assistant_id = createAssistant("You are a helpful assistant who is an expert in Fashion Shoots.")
|
87 |
-
updated_prompt = prompts["IDEA_GENERATION_PROMPT"].format(
|
88 |
-
brand_details=st.session_state["brand_summary"],
|
89 |
-
product_details=st.session_state["product_info"],
|
90 |
-
type_of_shoot=st.session_state["shoot_type"],
|
91 |
-
json_schema=JSON_SCHEMA_FOR_GPT,
|
92 |
-
product_name=st.session_state["product_description"]
|
93 |
-
)
|
94 |
-
file_locations = []
|
95 |
-
for uploaded_file in st.session_state['uploaded_files']:
|
96 |
-
bytes_data = uploaded_file.getvalue()
|
97 |
-
image = Image.open(io.BytesIO(bytes_data))
|
98 |
-
image.verify()
|
99 |
-
location = f"temp_image_{uploaded_file.name}"
|
100 |
-
with open(location, "wb") as f:
|
101 |
-
f.write(bytes_data)
|
102 |
-
file_locations.append(location)
|
103 |
-
image.close()
|
104 |
-
for uploaded_file in st.session_state['reference_images']:
|
105 |
-
bytes_data = uploaded_file.getvalue()
|
106 |
-
image = Image.open(io.BytesIO(bytes_data))
|
107 |
-
image.verify()
|
108 |
-
location = f"temp2_image_{uploaded_file.name}"
|
109 |
-
with open(location, "wb") as f:
|
110 |
-
f.write(bytes_data)
|
111 |
-
file_locations.append(location)
|
112 |
-
image.close()
|
113 |
-
file_ids = [saveFileOpenAI(location) for location in file_locations]
|
114 |
-
thread_id = startAssistantThread(file_ids, updated_prompt, "yes", "yes")
|
115 |
-
st.session_state.assistant_id = assistant_id
|
116 |
-
st.session_state.thread_id = thread_id
|
117 |
-
st.session_state.assistant_initialized = True
|
118 |
-
regenerate_images(thread_id, assistant_id)
|
119 |
-
if feedback:
|
120 |
-
if 'images' in st.session_state and 'descriptions' in st.session_state:
|
121 |
-
for image_path in st.session_state['images']:
|
122 |
-
os.remove(image_path)
|
123 |
-
del st.session_state['images']
|
124 |
-
del st.session_state['descriptions']
|
125 |
-
del st.session_state["json_descriptions"]
|
126 |
-
addMessageToThread(st.session_state.thread_id, feedback)
|
127 |
-
regenerate_images(st.session_state.thread_id, st.session_state.assistant_id)
|
128 |
-
selected_image_index = None
|
129 |
-
cols = st.columns(1)
|
130 |
-
for i in range(len(st.session_state["images"])):
|
131 |
-
with cols[i]:
|
132 |
-
st.image(st.session_state.images[i], caption=st.session_state.descriptions[i], use_column_width=True)
|
133 |
-
if st.radio(f"Select {i + 1}", [f"Select Image {i + 1}"], key=f"radio_{i}"):
|
134 |
-
selected_image_index = i
|
135 |
-
if selected_image_index is not None and st.button("Refine"):
|
136 |
-
st.session_state.selected_image_index = selected_image_index
|
137 |
-
st.session_state.selected_image = st.session_state.images[selected_image_index]
|
138 |
-
st.session_state.selected_text = st.session_state.descriptions[selected_image_index]
|
139 |
-
st.session_state['page'] = "Page 4"
|
140 |
-
if st.button("Go Back!"):
|
141 |
-
st.session_state.page = "Page 2"
|
142 |
-
|
143 |
-
|
144 |
-
def regenerate_images(thread_id, assistant_id):
|
145 |
-
"""Helper function to generate images and descriptions."""
|
146 |
-
response_from_process_list = []
|
147 |
-
for _ in range(1): # Assuming you generate 1 set of image/description
|
148 |
-
response_from_process = process_run(st, thread_id, assistant_id)
|
149 |
-
response_from_process_list.append(response_from_process)
|
150 |
-
|
151 |
-
summary_list = []
|
152 |
-
for final_response in response_from_process_list:
|
153 |
-
prompt_for_idea_summary = prompts["IDEA_SUMMARY_PROMPT"].format(
|
154 |
-
json_schema=str(final_response)
|
155 |
-
)
|
156 |
-
summary = create_chat_completion_request_open_ai_for_summary(prompt_for_idea_summary, "No")
|
157 |
-
summary_list.append(summary)
|
158 |
-
|
159 |
-
# Generate images based on the summaries
|
160 |
-
flux_generated_theme_image = []
|
161 |
-
for summary in summary_list:
|
162 |
-
theme_image = flux_generated_image(summary)
|
163 |
-
flux_generated_theme_image.append(theme_image["file_name"])
|
164 |
-
|
165 |
-
# Save the new images and descriptions in session state
|
166 |
-
st.session_state["images"] = flux_generated_theme_image
|
167 |
-
st.session_state["descriptions"] = summary_list
|
168 |
-
st.session_state["json_descriptions"] = response_from_process_list
|
169 |
-
|
170 |
-
|
171 |
-
def page4():
|
172 |
-
import json
|
173 |
-
selected_theme_text_by_user = st.session_state.json_descriptions[st.session_state.selected_image_index]
|
174 |
-
print(selected_theme_text_by_user)
|
175 |
-
schema_for_model_bg = {"type": "object",
|
176 |
-
"properties": {
|
177 |
-
"Model": {
|
178 |
-
"type": "string",
|
179 |
-
"description": "The model name or identifier."
|
180 |
-
},
|
181 |
-
"Background": {
|
182 |
-
"type": "string",
|
183 |
-
"description": "Description or type of the background."
|
184 |
-
}},
|
185 |
-
"required": ["Model", "Background"],
|
186 |
-
"additionalProperties": False
|
187 |
-
}
|
188 |
-
prompt_to_get_details = (f"You are provided with a brief of a Fashion Shoot : "
|
189 |
-
f"{st.session_state["json_descriptions"]}
|
190 |
-
f"have two keys ```Model``` and ```Background```. Provide all detail's"
|
191 |
-
f"present about model and background in the brief provided by you. Just provide a "
|
192 |
-
f"natural langauge description. I will use it as description of model and "
|
193 |
-
f"background needed by the brand Output JSON following the schema")
|
194 |
-
response_from_open_ai = create_chat_completion_request_open_ai_for_summary(prompt_to_get_details,
|
195 |
-
schema_name="model_bg",
|
196 |
-
json_schema=schema_for_model_bg,
|
197 |
-
json_mode="yes")
|
198 |
-
json_response_from_open_ai = json.loads(response_from_open_ai)
|
199 |
-
with (st.sidebar):
|
200 |
-
st.title(st.session_state["product_info"])
|
201 |
-
st.write("Product Image")
|
202 |
-
st.image(st.session_state['uploaded_files'])
|
203 |
-
st.text("Scene Suggestion:")
|
204 |
-
st.image(st.session_state.selected_image)
|
205 |
-
dimensions = st.text_input("Enter Dimensions e.g 3:4, 1:2", key="Dimensions")
|
206 |
-
seed = st.selectbox(
|
207 |
-
"Seed Preference",
|
208 |
-
("Fixed", "Random"),
|
209 |
-
)
|
210 |
-
if seed == "Fixed":
|
211 |
-
seed_number = st.number_input("Enter an integer:", min_value=1, max_value=100000, value=10, step=1)
|
212 |
-
else:
|
213 |
-
seed_number = 0
|
214 |
-
st.text("Thanks will take care")
|
215 |
-
model_preference = st.selectbox(
|
216 |
-
"Model Preference",
|
217 |
-
("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
|
218 |
-
)
|
219 |
-
if model_preference == "Create Own/Edit Pre-filled":
|
220 |
-
pre_filled_model_details = st.text_area("Model Idea", value=json_response_from_open_ai["Model"],
|
221 |
-
key="Model Idea")
|
222 |
-
elif model_preference == "Ideas":
|
223 |
-
prompt_to_generate_idea = ("Your task is to create model ideas for shoot of a product of a brand. "
|
224 |
-
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
225 |
-
"which is: ```{product_details}```.\n Reference images for the product and "
|
226 |
-
"brands shoot idea is already provided with you. Additionally brand wants to "
|
227 |
-
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
228 |
-
"think step by step and provide your ideas about what type of model the brand"
|
229 |
-
"should need based on mentioned JSON format. Also provide a combined prompt "
|
230 |
-
"which the brand will use to create a shoot image. While creating the "
|
231 |
-
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
232 |
-
" mentioned in the JSON.")
|
233 |
-
updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
|
234 |
-
brand_details=st.session_state["brand_summary"],
|
235 |
-
product_details=st.session_state["product_info"],
|
236 |
-
type_of_shoot=st.session_state["shoot_type"],
|
237 |
-
product_name=st.session_state["product_description"]
|
238 |
-
|
239 |
-
)
|
240 |
-
response_for_only_model = create_chat_completion_request_open_ai_for_summary(updated_model_idea_gen_prompt
|
241 |
-
, schema_name="model_only",
|
242 |
-
json_schema=
|
243 |
-
UPDATED_MODEL_ONLY_SCHEMA,
|
244 |
-
json_mode="yes")
|
245 |
-
pre_filled_model_details = st.text_area("Model Idea", value=response_for_only_model,
|
246 |
-
key="Model Idea")
|
247 |
-
else:
|
248 |
-
uploaded_files = st.file_uploader("Upload one Model Reference Image here",
|
249 |
-
accept_multiple_files=False, key="uploader")
|
250 |
-
bytes_data = uploaded_files.getvalue()
|
251 |
-
image = Image.open(io.BytesIO(bytes_data))
|
252 |
-
image.verify()
|
253 |
-
location = f"temp_image_{uploaded_files.name}"
|
254 |
-
with open(location, "wb") as f:
|
255 |
-
f.write(bytes_data)
|
256 |
-
image.close()
|
257 |
-
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_model_only}."
|
258 |
-
"Your task is to create model ideas for shoot of a product of a brand. "
|
259 |
-
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
260 |
-
"which is: ```{product_details}```.\n Reference images for the product and "
|
261 |
-
"brands shoot idea is already provided with you. Additionally brand wants to "
|
262 |
-
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
263 |
-
"think step by step and provide your ideas about what type of model the brand"
|
264 |
-
"should need based on mentioned JSON format. Also provide a combined prompt "
|
265 |
-
"which the brand will use to create a shoot image. While creating the "
|
266 |
-
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
267 |
-
" mentioned in the JSON.")
|
268 |
-
updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
|
269 |
-
json_schema_model_only=UPDATED_MODEL_ONLY_SCHEMA,
|
270 |
-
brand_details=st.session_state["brand_summary"],
|
271 |
-
product_details=st.session_state["product_info"],
|
272 |
-
type_of_shoot=st.session_state["shoot_type"],
|
273 |
-
product_name=st.session_state["product_description"]
|
274 |
-
|
275 |
-
)
|
276 |
-
json_response = create_image_completion_request_gpt(location, updated_model_idea_gen_prompt)
|
277 |
-
pre_filled_model_details = st.text_area("Model Idea", value=json_response,
|
278 |
-
key="Model Idea")
|
279 |
-
background_preference = st.selectbox(
|
280 |
-
"Background Preference",
|
281 |
-
("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
|
282 |
-
)
|
283 |
-
if background_preference == "Create Own/Edit Pre-filled":
|
284 |
-
pre_filled_background_details = st.text_area("Background Idea",
|
285 |
-
value=json_response_from_open_ai["Background"],
|
286 |
-
key="Background Idea")
|
287 |
-
elif background_preference == "Ideas":
|
288 |
-
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_background_only}."
|
289 |
-
"Your task is to create location/background ideas for shoot of a "
|
290 |
-
"product of a brand. "
|
291 |
-
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
292 |
-
"which is: ```{product_details}```.\n Reference images for the product and "
|
293 |
-
"brands shoot idea is already provided with you. Additionally brand wants to "
|
294 |
-
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
295 |
-
"think step by step and provide your ideas about what type of location the brand"
|
296 |
-
"should need based on mentioned JSON format. Also provide a combined prompt "
|
297 |
-
"which the brand will use to create a shoot image. While creating the "
|
298 |
-
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
299 |
-
" mentioned in the JSON.")
|
300 |
-
updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
|
301 |
-
json_schema_background_only=JSON_SCHEMA_FOR_LOC_ONLY,
|
302 |
-
brand_details=st.session_state["brand_summary"],
|
303 |
-
product_details=st.session_state["product_info"],
|
304 |
-
type_of_shoot=st.session_state["shoot_type"],
|
305 |
-
product_name=st.session_state["product_description"]
|
306 |
-
|
307 |
-
)
|
308 |
-
response_for_only_bg = create_chat_completion_request_open_ai_for_summary(updated_bg_idea_gen_prompt,
|
309 |
-
schema_name="bg_o",
|
310 |
-
json_schema=JSON_SCHEMA_FOR_LOC_ONLY,
|
311 |
-
json_mode="yes")
|
312 |
-
pre_filled_background_details = st.text_area("Background Idea", value=response_for_only_bg,
|
313 |
-
key="Background Idea")
|
314 |
-
else:
|
315 |
-
uploaded_files = st.file_uploader("Upload one Background Reference Image here",
|
316 |
-
accept_multiple_files=False, key="uploader")
|
317 |
-
bytes_data = uploaded_files.getvalue()
|
318 |
-
image = Image.open(io.BytesIO(bytes_data))
|
319 |
-
image.verify()
|
320 |
-
location = f"temp2_image_{uploaded_files.name}"
|
321 |
-
with open(location, "wb") as f:
|
322 |
-
f.write(bytes_data)
|
323 |
-
image.close()
|
324 |
-
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_bg_only}."
|
325 |
-
"Your task is to create Background/Location ideas for shoot of a "
|
326 |
-
"product of a brand. "
|
327 |
-
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
328 |
-
"which is: ```{product_details}```.\n Reference images for the product and "
|
329 |
-
"brands shoot idea is already provided with you. Additionally brand wants to "
|
330 |
-
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
331 |
-
"think step by step and provide your ideas about what type of location the brand"
|
332 |
-
"should need based on mentioned JSON format. Also provide a combined prompt "
|
333 |
-
"which the brand will use to create a shoot image. While creating the "
|
334 |
-
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
335 |
-
" mentioned in the JSON.")
|
336 |
-
updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
|
337 |
-
json_schema_bg_only=JSON_SCHEMA_FOR_LOC_ONLY,
|
338 |
-
brand_details=st.session_state["brand_summary"],
|
339 |
-
product_details=st.session_state["product_info"],
|
340 |
-
type_of_shoot=st.session_state["shoot_type"],
|
341 |
-
product_name=st.session_state["product_description"]
|
342 |
-
|
343 |
-
)
|
344 |
-
json_response = create_image_completion_request_gpt(location, updated_bg_idea_gen_prompt)
|
345 |
-
pre_filled_background_details = st.text_area("Background Idea", value=json_response,
|
346 |
-
key="Background Idea")
|
347 |
-
start_chat = st.button("Start Chat")
|
348 |
-
if "mood_chat_messages" not in st.session_state:
|
349 |
-
st.session_state["mood_chat_messages"] = []
|
350 |
-
if seed and dimensions and model_preference and background_preference:
|
351 |
-
if start_chat:
|
352 |
-
final_mood_board_image_prompt = prompts["FINAL_PROMPT_GENERATION"].format(
|
353 |
-
brand_details=st.session_state["brand_summary"],
|
354 |
-
product_details=st.session_state["product_info"],
|
355 |
-
type_of_shoot=st.session_state["shoot_type"],
|
356 |
-
product_name=st.session_state["product_description"],
|
357 |
-
model_details=pre_filled_model_details,
|
358 |
-
location_details=pre_filled_background_details,
|
359 |
-
theme_details=str(selected_theme_text_by_user),
|
360 |
-
chat_history=str(st.session_state["mood_chat_messages"])
|
361 |
-
)
|
362 |
-
prompt_for_flux_mood_board = create_chat_completion_request_open_ai_for_summary(
|
363 |
-
final_mood_board_image_prompt, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
|
364 |
-
if seed == "Fixed":
|
365 |
-
generated_flux_image = flux_generated_image_seed(prompt_for_flux_mood_board, seed_number, dimensions)
|
366 |
-
else:
|
367 |
-
generated_flux_image = flux_generated_image(prompt_for_flux_mood_board)
|
368 |
-
st.session_state["mood_chat_messages"].append({
|
369 |
-
"role": "AI",
|
370 |
-
"message": prompt_for_flux_mood_board,
|
371 |
-
"image": generated_flux_image["file_name"]
|
372 |
-
})
|
373 |
-
# for message in st.session_state["mood_chat_messages"]:
|
374 |
-
# if message["role"] == "AI":
|
375 |
-
# st.write(f"Caimera AI: {message['message']}")
|
376 |
-
# st.image(message['image'])
|
377 |
-
#else:
|
378 |
-
# st.write(f"**You**: {message['message']}")
|
379 |
-
user_input = st.chat_input("Type your message here...")
|
380 |
-
if user_input:
|
381 |
-
st.session_state["mood_chat_messages"].append({"role": "User", "message": user_input})
|
382 |
-
prompt_for_flux_mood_board_n = create_chat_completion_request_open_ai_for_summary(
|
383 |
-
user_input, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
|
384 |
-
if seed == "Fixed":
|
385 |
-
generated_flux_image_n = flux_generated_image_seed(prompt_for_flux_mood_board_n, seed_number,
|
386 |
-
dimensions)
|
387 |
-
else:
|
388 |
-
generated_flux_image_n = flux_generated_image(prompt_for_flux_mood_board_n)
|
389 |
-
st.session_state["mood_chat_messages"].append({
|
390 |
-
"role": "AI",
|
391 |
-
"message": prompt_for_flux_mood_board_n,
|
392 |
-
"image": generated_flux_image_n["file_name"]
|
393 |
-
})
|
394 |
-
for message in st.session_state["mood_chat_messages"]:
|
395 |
-
if message["role"] == "AI":
|
396 |
-
st.write(f"**AI**: {message['message']}")
|
397 |
-
st.image(message['image'])
|
398 |
-
else:
|
399 |
-
st.write(f"**You**: {message['message']}")
|
400 |
-
print(seed_number)
|
401 |
-
|
402 |
-
|
403 |
-
if 'page' not in st.session_state:
|
404 |
-
st.session_state.page = "Page 1"
|
405 |
-
|
406 |
-
# Routing between pages
|
407 |
-
if st.session_state.page == "Page 1":
|
408 |
-
page1()
|
409 |
-
elif st.session_state.page == "Page 2":
|
410 |
-
page2()
|
411 |
-
elif st.session_state.page == "Page 3":
|
412 |
-
page3()
|
413 |
-
elif st.session_state.page == "Page 4":
|
414 |
-
page4()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from prompts import prompts
|
4 |
+
from constants import JSON_SCHEMA_FOR_GPT, UPDATED_MODEL_ONLY_SCHEMA, JSON_SCHEMA_FOR_LOC_ONLY
|
5 |
+
from gpt import runAssistant, checkRunStatus, retrieveThread, createAssistant, saveFileOpenAI, startAssistantThread, \
|
6 |
+
create_chat_completion_request_open_ai_for_summary, addMessageToThread, create_image_completion_request_gpt
|
7 |
+
from summarizer import create_brand_html, create_langchain_openai_query
|
8 |
+
from theme import flux_generated_image, flux_generated_image_seed
|
9 |
+
import time
|
10 |
+
from PIL import Image
|
11 |
+
import io
|
12 |
+
|
13 |
+
|
14 |
+
def process_run(st, thread_id, assistant_id):
|
15 |
+
run_id = runAssistant(thread_id, assistant_id)
|
16 |
+
status = 'running'
|
17 |
+
while status != 'completed':
|
18 |
+
with st.spinner('. . .'):
|
19 |
+
time.sleep(20)
|
20 |
+
status = checkRunStatus(thread_id, run_id)
|
21 |
+
thread_messages = retrieveThread(thread_id)
|
22 |
+
for message in thread_messages:
|
23 |
+
if not message['role'] == 'user':
|
24 |
+
return message["content"]
|
25 |
+
else:
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
def page1():
|
30 |
+
st.title("Upload Product")
|
31 |
+
st.markdown("<h2 style='color:#FF5733; font-weight:bold;'>Add a Product</h2>", unsafe_allow_html=True)
|
32 |
+
st.markdown("<p style='color:#444;'>Upload your product images, more images you upload better the AI learns</p>",
|
33 |
+
unsafe_allow_html=True)
|
34 |
+
uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True, key="uploaded_files_key")
|
35 |
+
product_description = st.text_area("Describe the product", value=st.session_state.get("product_description", ""))
|
36 |
+
col1, col2 = st.columns([1, 2])
|
37 |
+
with col1:
|
38 |
+
if st.button("Save"):
|
39 |
+
st.session_state['uploaded_files'] = uploaded_files
|
40 |
+
st.session_state['product_description'] = product_description
|
41 |
+
st.success("Product information saved!")
|
42 |
+
with col2:
|
43 |
+
if st.button("Add product and move to next page"):
|
44 |
+
if not uploaded_files:
|
45 |
+
st.warning("Please upload at least one image.")
|
46 |
+
elif not product_description:
|
47 |
+
st.warning("Please provide a description for the product.")
|
48 |
+
else:
|
49 |
+
st.session_state['uploaded_files'] = uploaded_files
|
50 |
+
st.session_state['product_description'] = product_description
|
51 |
+
st.session_state['page'] = "Page 2"
|
52 |
+
|
53 |
+
|
54 |
+
def page2():
|
55 |
+
st.title("Tell us about your shoot preference")
|
56 |
+
st.markdown("<h3 style='color:#444;'>What are you shooting today?</h3>", unsafe_allow_html=True)
|
57 |
+
shoot_type = st.radio("Select your shoot type:", ["Editorial", "Catalogue"], index=0)
|
58 |
+
st.session_state['shoot_type'] = shoot_type
|
59 |
+
brand_link = st.text_input("Add your brand link:", value=st.session_state.get("brand_link", ""))
|
60 |
+
st.session_state['brand_link'] = brand_link
|
61 |
+
if st.button("Get Brand Summary"):
|
62 |
+
if brand_link:
|
63 |
+
brand_summary_html = create_brand_html(brand_link)
|
64 |
+
brand_summary = create_langchain_openai_query(brand_summary_html)
|
65 |
+
st.session_state['brand_summary'] = brand_summary
|
66 |
+
st.success("Brand summary fetched!")
|
67 |
+
else:
|
68 |
+
st.warning("Please add a brand link.")
|
69 |
+
brand_summary_value = st.session_state.get('brand_summary', "")
|
70 |
+
editable_summary = st.text_area("Brand Summary:", value=brand_summary_value, height=100)
|
71 |
+
st.session_state['brand_summary'] = editable_summary
|
72 |
+
product_info = st.text_area("Tell us something about your product:", value=st.session_state.get("product_info", ""))
|
73 |
+
st.session_state['product_info'] = product_info
|
74 |
+
reference_images = st.file_uploader("Upload Reference Images", accept_multiple_files=True,
|
75 |
+
key="reference_images_key")
|
76 |
+
st.session_state['reference_images'] = reference_images
|
77 |
+
if st.button("Give Me Ideas"):
|
78 |
+
st.session_state['page'] = "Page 3"
|
79 |
+
|
80 |
+
|
81 |
+
def page3():
|
82 |
+
st.title("Scene Suggestions")
|
83 |
+
st.write("Based on your uploaded product and references!")
|
84 |
+
feedback = st.chat_input("Provide feedback:")
|
85 |
+
if not st.session_state.get("assistant_initialized", False):
|
86 |
+
assistant_id = createAssistant("You are a helpful assistant who is an expert in Fashion Shoots.")
|
87 |
+
updated_prompt = prompts["IDEA_GENERATION_PROMPT"].format(
|
88 |
+
brand_details=st.session_state["brand_summary"],
|
89 |
+
product_details=st.session_state["product_info"],
|
90 |
+
type_of_shoot=st.session_state["shoot_type"],
|
91 |
+
json_schema=JSON_SCHEMA_FOR_GPT,
|
92 |
+
product_name=st.session_state["product_description"]
|
93 |
+
)
|
94 |
+
file_locations = []
|
95 |
+
for uploaded_file in st.session_state['uploaded_files']:
|
96 |
+
bytes_data = uploaded_file.getvalue()
|
97 |
+
image = Image.open(io.BytesIO(bytes_data))
|
98 |
+
image.verify()
|
99 |
+
location = f"temp_image_{uploaded_file.name}"
|
100 |
+
with open(location, "wb") as f:
|
101 |
+
f.write(bytes_data)
|
102 |
+
file_locations.append(location)
|
103 |
+
image.close()
|
104 |
+
for uploaded_file in st.session_state['reference_images']:
|
105 |
+
bytes_data = uploaded_file.getvalue()
|
106 |
+
image = Image.open(io.BytesIO(bytes_data))
|
107 |
+
image.verify()
|
108 |
+
location = f"temp2_image_{uploaded_file.name}"
|
109 |
+
with open(location, "wb") as f:
|
110 |
+
f.write(bytes_data)
|
111 |
+
file_locations.append(location)
|
112 |
+
image.close()
|
113 |
+
file_ids = [saveFileOpenAI(location) for location in file_locations]
|
114 |
+
thread_id = startAssistantThread(file_ids, updated_prompt, "yes", "yes")
|
115 |
+
st.session_state.assistant_id = assistant_id
|
116 |
+
st.session_state.thread_id = thread_id
|
117 |
+
st.session_state.assistant_initialized = True
|
118 |
+
regenerate_images(thread_id, assistant_id)
|
119 |
+
if feedback:
|
120 |
+
if 'images' in st.session_state and 'descriptions' in st.session_state:
|
121 |
+
for image_path in st.session_state['images']:
|
122 |
+
os.remove(image_path)
|
123 |
+
del st.session_state['images']
|
124 |
+
del st.session_state['descriptions']
|
125 |
+
del st.session_state["json_descriptions"]
|
126 |
+
addMessageToThread(st.session_state.thread_id, feedback)
|
127 |
+
regenerate_images(st.session_state.thread_id, st.session_state.assistant_id)
|
128 |
+
selected_image_index = None
|
129 |
+
cols = st.columns(1)
|
130 |
+
for i in range(len(st.session_state["images"])):
|
131 |
+
with cols[i]:
|
132 |
+
st.image(st.session_state.images[i], caption=st.session_state.descriptions[i], use_column_width=True)
|
133 |
+
if st.radio(f"Select {i + 1}", [f"Select Image {i + 1}"], key=f"radio_{i}"):
|
134 |
+
selected_image_index = i
|
135 |
+
if selected_image_index is not None and st.button("Refine"):
|
136 |
+
st.session_state.selected_image_index = selected_image_index
|
137 |
+
st.session_state.selected_image = st.session_state.images[selected_image_index]
|
138 |
+
st.session_state.selected_text = st.session_state.descriptions[selected_image_index]
|
139 |
+
st.session_state['page'] = "Page 4"
|
140 |
+
if st.button("Go Back!"):
|
141 |
+
st.session_state.page = "Page 2"
|
142 |
+
|
143 |
+
|
144 |
+
def regenerate_images(thread_id, assistant_id):
|
145 |
+
"""Helper function to generate images and descriptions."""
|
146 |
+
response_from_process_list = []
|
147 |
+
for _ in range(1): # Assuming you generate 1 set of image/description
|
148 |
+
response_from_process = process_run(st, thread_id, assistant_id)
|
149 |
+
response_from_process_list.append(response_from_process)
|
150 |
+
|
151 |
+
summary_list = []
|
152 |
+
for final_response in response_from_process_list:
|
153 |
+
prompt_for_idea_summary = prompts["IDEA_SUMMARY_PROMPT"].format(
|
154 |
+
json_schema=str(final_response)
|
155 |
+
)
|
156 |
+
summary = create_chat_completion_request_open_ai_for_summary(prompt_for_idea_summary, "No")
|
157 |
+
summary_list.append(summary)
|
158 |
+
|
159 |
+
# Generate images based on the summaries
|
160 |
+
flux_generated_theme_image = []
|
161 |
+
for summary in summary_list:
|
162 |
+
theme_image = flux_generated_image(summary)
|
163 |
+
flux_generated_theme_image.append(theme_image["file_name"])
|
164 |
+
|
165 |
+
# Save the new images and descriptions in session state
|
166 |
+
st.session_state["images"] = flux_generated_theme_image
|
167 |
+
st.session_state["descriptions"] = summary_list
|
168 |
+
st.session_state["json_descriptions"] = response_from_process_list
|
169 |
+
|
170 |
+
|
171 |
+
def page4():
|
172 |
+
import json
|
173 |
+
selected_theme_text_by_user = st.session_state.json_descriptions[st.session_state.selected_image_index]
|
174 |
+
print(selected_theme_text_by_user)
|
175 |
+
schema_for_model_bg = {"type": "object",
|
176 |
+
"properties": {
|
177 |
+
"Model": {
|
178 |
+
"type": "string",
|
179 |
+
"description": "The model name or identifier."
|
180 |
+
},
|
181 |
+
"Background": {
|
182 |
+
"type": "string",
|
183 |
+
"description": "Description or type of the background."
|
184 |
+
}},
|
185 |
+
"required": ["Model", "Background"],
|
186 |
+
"additionalProperties": False
|
187 |
+
}
|
188 |
+
prompt_to_get_details = (f"You are provided with a brief of a Fashion Shoot : "
|
189 |
+
f"{st.session_state[\"json_descriptions\"]}.\n Now provide me a JSON which will"
|
190 |
+
f"have two keys ```Model``` and ```Background```. Provide all detail's"
|
191 |
+
f"present about model and background in the brief provided by you. Just provide a "
|
192 |
+
f"natural langauge description. I will use it as description of model and "
|
193 |
+
f"background needed by the brand Output JSON following the schema")
|
194 |
+
response_from_open_ai = create_chat_completion_request_open_ai_for_summary(prompt_to_get_details,
|
195 |
+
schema_name="model_bg",
|
196 |
+
json_schema=schema_for_model_bg,
|
197 |
+
json_mode="yes")
|
198 |
+
json_response_from_open_ai = json.loads(response_from_open_ai)
|
199 |
+
with (st.sidebar):
|
200 |
+
st.title(st.session_state["product_info"])
|
201 |
+
st.write("Product Image")
|
202 |
+
st.image(st.session_state['uploaded_files'])
|
203 |
+
st.text("Scene Suggestion:")
|
204 |
+
st.image(st.session_state.selected_image)
|
205 |
+
dimensions = st.text_input("Enter Dimensions e.g 3:4, 1:2", key="Dimensions")
|
206 |
+
seed = st.selectbox(
|
207 |
+
"Seed Preference",
|
208 |
+
("Fixed", "Random"),
|
209 |
+
)
|
210 |
+
if seed == "Fixed":
|
211 |
+
seed_number = st.number_input("Enter an integer:", min_value=1, max_value=100000, value=10, step=1)
|
212 |
+
else:
|
213 |
+
seed_number = 0
|
214 |
+
st.text("Thanks will take care")
|
215 |
+
model_preference = st.selectbox(
|
216 |
+
"Model Preference",
|
217 |
+
("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
|
218 |
+
)
|
219 |
+
if model_preference == "Create Own/Edit Pre-filled":
|
220 |
+
pre_filled_model_details = st.text_area("Model Idea", value=json_response_from_open_ai["Model"],
|
221 |
+
key="Model Idea")
|
222 |
+
elif model_preference == "Ideas":
|
223 |
+
prompt_to_generate_idea = ("Your task is to create model ideas for shoot of a product of a brand. "
|
224 |
+
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
225 |
+
"which is: ```{product_details}```.\n Reference images for the product and "
|
226 |
+
"brands shoot idea is already provided with you. Additionally brand wants to "
|
227 |
+
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
228 |
+
"think step by step and provide your ideas about what type of model the brand"
|
229 |
+
"should need based on mentioned JSON format. Also provide a combined prompt "
|
230 |
+
"which the brand will use to create a shoot image. While creating the "
|
231 |
+
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
232 |
+
" mentioned in the JSON.")
|
233 |
+
updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
|
234 |
+
brand_details=st.session_state["brand_summary"],
|
235 |
+
product_details=st.session_state["product_info"],
|
236 |
+
type_of_shoot=st.session_state["shoot_type"],
|
237 |
+
product_name=st.session_state["product_description"]
|
238 |
+
|
239 |
+
)
|
240 |
+
response_for_only_model = create_chat_completion_request_open_ai_for_summary(updated_model_idea_gen_prompt
|
241 |
+
, schema_name="model_only",
|
242 |
+
json_schema=
|
243 |
+
UPDATED_MODEL_ONLY_SCHEMA,
|
244 |
+
json_mode="yes")
|
245 |
+
pre_filled_model_details = st.text_area("Model Idea", value=response_for_only_model,
|
246 |
+
key="Model Idea")
|
247 |
+
else:
|
248 |
+
uploaded_files = st.file_uploader("Upload one Model Reference Image here",
|
249 |
+
accept_multiple_files=False, key="uploader")
|
250 |
+
bytes_data = uploaded_files.getvalue()
|
251 |
+
image = Image.open(io.BytesIO(bytes_data))
|
252 |
+
image.verify()
|
253 |
+
location = f"temp_image_{uploaded_files.name}"
|
254 |
+
with open(location, "wb") as f:
|
255 |
+
f.write(bytes_data)
|
256 |
+
image.close()
|
257 |
+
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_model_only}."
|
258 |
+
"Your task is to create model ideas for shoot of a product of a brand. "
|
259 |
+
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
260 |
+
"which is: ```{product_details}```.\n Reference images for the product and "
|
261 |
+
"brands shoot idea is already provided with you. Additionally brand wants to "
|
262 |
+
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
263 |
+
"think step by step and provide your ideas about what type of model the brand"
|
264 |
+
"should need based on mentioned JSON format. Also provide a combined prompt "
|
265 |
+
"which the brand will use to create a shoot image. While creating the "
|
266 |
+
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
267 |
+
" mentioned in the JSON.")
|
268 |
+
updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
|
269 |
+
json_schema_model_only=UPDATED_MODEL_ONLY_SCHEMA,
|
270 |
+
brand_details=st.session_state["brand_summary"],
|
271 |
+
product_details=st.session_state["product_info"],
|
272 |
+
type_of_shoot=st.session_state["shoot_type"],
|
273 |
+
product_name=st.session_state["product_description"]
|
274 |
+
|
275 |
+
)
|
276 |
+
json_response = create_image_completion_request_gpt(location, updated_model_idea_gen_prompt)
|
277 |
+
pre_filled_model_details = st.text_area("Model Idea", value=json_response,
|
278 |
+
key="Model Idea")
|
279 |
+
background_preference = st.selectbox(
|
280 |
+
"Background Preference",
|
281 |
+
("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
|
282 |
+
)
|
283 |
+
if background_preference == "Create Own/Edit Pre-filled":
|
284 |
+
pre_filled_background_details = st.text_area("Background Idea",
|
285 |
+
value=json_response_from_open_ai["Background"],
|
286 |
+
key="Background Idea")
|
287 |
+
elif background_preference == "Ideas":
|
288 |
+
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_background_only}."
|
289 |
+
"Your task is to create location/background ideas for shoot of a "
|
290 |
+
"product of a brand. "
|
291 |
+
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
292 |
+
"which is: ```{product_details}```.\n Reference images for the product and "
|
293 |
+
"brands shoot idea is already provided with you. Additionally brand wants to "
|
294 |
+
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
295 |
+
"think step by step and provide your ideas about what type of location the brand"
|
296 |
+
"should need based on mentioned JSON format. Also provide a combined prompt "
|
297 |
+
"which the brand will use to create a shoot image. While creating the "
|
298 |
+
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
299 |
+
" mentioned in the JSON.")
|
300 |
+
updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
|
301 |
+
json_schema_background_only=JSON_SCHEMA_FOR_LOC_ONLY,
|
302 |
+
brand_details=st.session_state["brand_summary"],
|
303 |
+
product_details=st.session_state["product_info"],
|
304 |
+
type_of_shoot=st.session_state["shoot_type"],
|
305 |
+
product_name=st.session_state["product_description"]
|
306 |
+
|
307 |
+
)
|
308 |
+
response_for_only_bg = create_chat_completion_request_open_ai_for_summary(updated_bg_idea_gen_prompt,
|
309 |
+
schema_name="bg_o",
|
310 |
+
json_schema=JSON_SCHEMA_FOR_LOC_ONLY,
|
311 |
+
json_mode="yes")
|
312 |
+
pre_filled_background_details = st.text_area("Background Idea", value=response_for_only_bg,
|
313 |
+
key="Background Idea")
|
314 |
+
else:
|
315 |
+
uploaded_files = st.file_uploader("Upload one Background Reference Image here",
|
316 |
+
accept_multiple_files=False, key="uploader")
|
317 |
+
bytes_data = uploaded_files.getvalue()
|
318 |
+
image = Image.open(io.BytesIO(bytes_data))
|
319 |
+
image.verify()
|
320 |
+
location = f"temp2_image_{uploaded_files.name}"
|
321 |
+
with open(location, "wb") as f:
|
322 |
+
f.write(bytes_data)
|
323 |
+
image.close()
|
324 |
+
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_bg_only}."
|
325 |
+
"Your task is to create Background/Location ideas for shoot of a "
|
326 |
+
"product of a brand. "
|
327 |
+
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
328 |
+
"which is: ```{product_details}```.\n Reference images for the product and "
|
329 |
+
"brands shoot idea is already provided with you. Additionally brand wants to "
|
330 |
+
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
331 |
+
"think step by step and provide your ideas about what type of location the brand"
|
332 |
+
"should need based on mentioned JSON format. Also provide a combined prompt "
|
333 |
+
"which the brand will use to create a shoot image. While creating the "
|
334 |
+
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
335 |
+
" mentioned in the JSON.")
|
336 |
+
updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
|
337 |
+
json_schema_bg_only=JSON_SCHEMA_FOR_LOC_ONLY,
|
338 |
+
brand_details=st.session_state["brand_summary"],
|
339 |
+
product_details=st.session_state["product_info"],
|
340 |
+
type_of_shoot=st.session_state["shoot_type"],
|
341 |
+
product_name=st.session_state["product_description"]
|
342 |
+
|
343 |
+
)
|
344 |
+
json_response = create_image_completion_request_gpt(location, updated_bg_idea_gen_prompt)
|
345 |
+
pre_filled_background_details = st.text_area("Background Idea", value=json_response,
|
346 |
+
key="Background Idea")
|
347 |
+
start_chat = st.button("Start Chat")
|
348 |
+
if "mood_chat_messages" not in st.session_state:
|
349 |
+
st.session_state["mood_chat_messages"] = []
|
350 |
+
if seed and dimensions and model_preference and background_preference:
|
351 |
+
if start_chat:
|
352 |
+
final_mood_board_image_prompt = prompts["FINAL_PROMPT_GENERATION"].format(
|
353 |
+
brand_details=st.session_state["brand_summary"],
|
354 |
+
product_details=st.session_state["product_info"],
|
355 |
+
type_of_shoot=st.session_state["shoot_type"],
|
356 |
+
product_name=st.session_state["product_description"],
|
357 |
+
model_details=pre_filled_model_details,
|
358 |
+
location_details=pre_filled_background_details,
|
359 |
+
theme_details=str(selected_theme_text_by_user),
|
360 |
+
chat_history=str(st.session_state["mood_chat_messages"])
|
361 |
+
)
|
362 |
+
prompt_for_flux_mood_board = create_chat_completion_request_open_ai_for_summary(
|
363 |
+
final_mood_board_image_prompt, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
|
364 |
+
if seed == "Fixed":
|
365 |
+
generated_flux_image = flux_generated_image_seed(prompt_for_flux_mood_board, seed_number, dimensions)
|
366 |
+
else:
|
367 |
+
generated_flux_image = flux_generated_image(prompt_for_flux_mood_board)
|
368 |
+
st.session_state["mood_chat_messages"].append({
|
369 |
+
"role": "AI",
|
370 |
+
"message": prompt_for_flux_mood_board,
|
371 |
+
"image": generated_flux_image["file_name"]
|
372 |
+
})
|
373 |
+
# for message in st.session_state["mood_chat_messages"]:
|
374 |
+
# if message["role"] == "AI":
|
375 |
+
# st.write(f"Caimera AI: {message['message']}")
|
376 |
+
# st.image(message['image'])
|
377 |
+
#else:
|
378 |
+
# st.write(f"**You**: {message['message']}")
|
379 |
+
user_input = st.chat_input("Type your message here...")
|
380 |
+
if user_input:
|
381 |
+
st.session_state["mood_chat_messages"].append({"role": "User", "message": user_input})
|
382 |
+
prompt_for_flux_mood_board_n = create_chat_completion_request_open_ai_for_summary(
|
383 |
+
user_input, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
|
384 |
+
if seed == "Fixed":
|
385 |
+
generated_flux_image_n = flux_generated_image_seed(prompt_for_flux_mood_board_n, seed_number,
|
386 |
+
dimensions)
|
387 |
+
else:
|
388 |
+
generated_flux_image_n = flux_generated_image(prompt_for_flux_mood_board_n)
|
389 |
+
st.session_state["mood_chat_messages"].append({
|
390 |
+
"role": "AI",
|
391 |
+
"message": prompt_for_flux_mood_board_n,
|
392 |
+
"image": generated_flux_image_n["file_name"]
|
393 |
+
})
|
394 |
+
for message in st.session_state["mood_chat_messages"]:
|
395 |
+
if message["role"] == "AI":
|
396 |
+
st.write(f"**AI**: {message['message']}")
|
397 |
+
st.image(message['image'])
|
398 |
+
else:
|
399 |
+
st.write(f"**You**: {message['message']}")
|
400 |
+
print(seed_number)
|
401 |
+
|
402 |
+
|
403 |
+
if 'page' not in st.session_state:
|
404 |
+
st.session_state.page = "Page 1"
|
405 |
+
|
406 |
+
# Routing between pages
|
407 |
+
if st.session_state.page == "Page 1":
|
408 |
+
page1()
|
409 |
+
elif st.session_state.page == "Page 2":
|
410 |
+
page2()
|
411 |
+
elif st.session_state.page == "Page 3":
|
412 |
+
page3()
|
413 |
+
elif st.session_state.page == "Page 4":
|
414 |
+
page4()
|