Spaces:
Running
Running
Update model.py
Browse files
model.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
-
from transformers import pipeline
|
4 |
|
5 |
load_dotenv()
|
6 |
-
|
|
|
|
|
7 |
generator = pipeline("text-generation", model=model_name)
|
|
|
8 |
|
9 |
def modelFeedback(ats_score, resume_data):
|
10 |
input_prompt = f"""
|
@@ -14,6 +17,20 @@ def modelFeedback(ats_score, resume_data):
|
|
14 |
Talk about each section of the user's resume and talk about good and bad points of it.
|
15 |
Resume Data: {resume_data}
|
16 |
"""
|
17 |
-
response = generator(input_prompt, max_new_tokens=150, num_return_sequences=1)[0]['generated_text']
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
return response
|
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
+
from transformers import pipeline, AutoTokenizer
|
4 |
|
5 |
load_dotenv()
|
6 |
+
|
7 |
+
# Load a larger Hugging Face model
|
8 |
+
model_name = "EleutherAI/gpt-neo-2.7B"
|
9 |
generator = pipeline("text-generation", model=model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
def modelFeedback(ats_score, resume_data):
|
13 |
input_prompt = f"""
|
|
|
17 |
Talk about each section of the user's resume and talk about good and bad points of it.
|
18 |
Resume Data: {resume_data}
|
19 |
"""
|
|
|
20 |
|
21 |
+
# Tokenize the input to check its length
|
22 |
+
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
|
23 |
+
input_length = input_ids.shape[1]
|
24 |
+
|
25 |
+
print(f"Input length: {input_length}")
|
26 |
+
|
27 |
+
# Generate response
|
28 |
+
response = generator(input_prompt, max_new_tokens=150, num_return_sequences=1)
|
29 |
+
|
30 |
+
# Check if response is not empty
|
31 |
+
if response and len(response) > 0:
|
32 |
+
generated_text = response[0]['generated_text']
|
33 |
+
else:
|
34 |
+
generated_text = "No response generated."
|
35 |
+
response = generated_text
|
36 |
return response
|