Spaces:
Running
Running
Update model.py
Browse files
model.py
CHANGED
@@ -1,28 +1,10 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import os
|
4 |
-
import requests
|
5 |
-
import json
|
6 |
-
import html # For escaping HTML characters
|
7 |
-
from bs4 import BeautifulSoup
|
8 |
-
from openai import OpenAI
|
9 |
|
10 |
-
|
11 |
-
client = OpenAI(
|
12 |
-
base_url="https://integrate.api.nvidia.com/v1",
|
13 |
-
api_key=os.environ.get("KEY")
|
14 |
-
)
|
15 |
-
|
16 |
-
def clean_text_output(text):
|
17 |
"""
|
18 |
-
|
19 |
"""
|
20 |
-
text = html.unescape(text) # Unescape HTML entities
|
21 |
-
soup = BeautifulSoup(text, 'html.parser') # Use BeautifulSoup to handle HTML tags
|
22 |
-
cleaned_text = soup.get_text(separator="\n").strip() # Remove tags and handle newlines
|
23 |
-
return cleaned_text
|
24 |
-
|
25 |
-
def modelFeedback(ats_score, resume_data, job_description):
|
26 |
input_prompt = f"""
|
27 |
You are now an ATS Score analyzer and given ATS Score is {int(ats_score * 100)}%.
|
28 |
Your task is to provide a comprehensive review and feedback based on the ATS score.
|
@@ -79,25 +61,25 @@ def modelFeedback(ats_score, resume_data, job_description):
|
|
79 |
IMPORTANT: The output should be as normal organised text not in any other format (don't give markdown text) and focus more on resume matching part that general resume review.
|
80 |
"""
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
|
|
83 |
try:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
temperature=0.01, # Lowering temperature for precise output
|
91 |
-
top_p=0.7, # Prioritize high-probability tokens
|
92 |
-
max_tokens=1500, # Allow longer content
|
93 |
)
|
94 |
-
|
95 |
-
|
96 |
-
feedback_text = response.choices[0].message.content.strip() # Corrected line
|
97 |
-
cleaned_feedback = clean_text_output(feedback_text)
|
98 |
-
|
99 |
return cleaned_feedback
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
return "Error: Unable to generate feedback."
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
def modelFeedback_direct(ats_score, resume_data, job_description):
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"""
|
6 |
+
Generate ATS feedback by loading model and tokenizer directly.
|
7 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
input_prompt = f"""
|
9 |
You are now an ATS Score analyzer and given ATS Score is {int(ats_score * 100)}%.
|
10 |
Your task is to provide a comprehensive review and feedback based on the ATS score.
|
|
|
61 |
IMPORTANT: The output should be as normal organised text not in any other format (don't give markdown text) and focus more on resume matching part that general resume review.
|
62 |
"""
|
63 |
|
64 |
+
# Load tokenizer and model
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
66 |
+
model = AutoModelForCausalLM.from_pretrained("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
67 |
+
|
68 |
+
# Tokenize the input
|
69 |
+
inputs = tokenizer.encode(input_prompt, return_tensors="pt")
|
70 |
|
71 |
+
# Generate the response
|
72 |
try:
|
73 |
+
outputs = model.generate(
|
74 |
+
inputs,
|
75 |
+
max_length=1500,
|
76 |
+
temperature=0.01,
|
77 |
+
top_p=0.7,
|
78 |
+
pad_token_id=tokenizer.eos_token_id
|
|
|
|
|
|
|
79 |
)
|
80 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
+
cleaned_feedback = clean_text_output(response_text)
|
|
|
|
|
|
|
82 |
return cleaned_feedback
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Model generation error: {e}")
|
85 |
+
return "Error: Unable to generate feedback."
|
|