File size: 4,824 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import abc


class ReplayBuffer(object, metaclass=abc.ABCMeta):
    """
    A class used to save and replay data.
    """

    @abc.abstractmethod
    def add_sample(self, observation, action, reward, next_observation,
                   terminal, **kwargs):
        """
        Add a transition tuple.
        """
        pass

    @abc.abstractmethod
    def terminate_episode(self):
        """
        Let the replay buffer know that the episode has terminated in case some
        special book-keeping has to happen.
        :return:
        """
        pass

    @abc.abstractmethod
    def num_steps_can_sample(self, **kwargs):
        """
        :return: # of unique items that can be sampled.
        """
        pass

    def add_path(self, path):
        """
        Add a path to the replay buffer.

        This default implementation naively goes through every step, but you
        may want to optimize this.

        NOTE: You should NOT call "terminate_episode" after calling add_path.
        It's assumed that this function handles the episode termination.

        :param path: Dict like one outputted by rlkit.samplers.util.rollout
        """
        for i, (
                obs,
                action,
                reward,
                next_obs,
                terminal,
                agent_info,
                env_info
        ) in enumerate(zip(
            path["observations"],
            path["actions"],
            path["rewards"],
            path["next_observations"],
            path["terminals"],
            path["agent_infos"],
            path["env_infos"],
        )):
            self.add_sample(
                observation=obs,
                action=action,
                reward=reward,
                next_observation=next_obs,
                terminal=terminal,
                agent_info=agent_info,
                env_info=env_info,
            )
        self.terminate_episode()

    def add_paths(self, paths):
        for path in paths:
            self.add_path(path)

    @abc.abstractmethod
    def random_batch(self, batch_size):
        """
        Return a batch of size `batch_size`.
        :param batch_size:
        :return:
        """
        pass

    def get_diagnostics(self):
        return {}

    def get_snapshot(self):
        return {}

    def end_epoch(self, epoch):
        return
    
class EnsembleReplayBuffer(object, metaclass=abc.ABCMeta):
    """
    A class used to save and replay data.
    """

    @abc.abstractmethod
    def add_sample(self, observation, action, reward, next_observation,
                   terminal, **kwargs):
        """
        Add a transition tuple.
        """
        pass

    @abc.abstractmethod
    def terminate_episode(self):
        """
        Let the replay buffer know that the episode has terminated in case some
        special book-keeping has to happen.
        :return:
        """
        pass

    @abc.abstractmethod
    def num_steps_can_sample(self, **kwargs):
        """
        :return: # of unique items that can be sampled.
        """
        pass

    def add_path(self, path):
        """
        Add a path to the replay buffer.

        This default implementation naively goes through every step, but you
        may want to optimize this.

        NOTE: You should NOT call "terminate_episode" after calling add_path.
        It's assumed that this function handles the episode termination.

        :param path: Dict like one outputted by rlkit.samplers.util.rollout
        """
        for i, (
                obs,
                action,
                reward,
                next_obs,
                terminal,
                agent_info,
                env_info,
                mask,
        ) in enumerate(zip(
            path["observations"],
            path["actions"],
            path["rewards"],
            path["next_observations"],
            path["terminals"],
            path["agent_infos"],
            path["env_infos"],
            path["masks"],
        )):
            self.add_sample(
                observation=obs,
                action=action,
                reward=reward,
                next_observation=next_obs,
                terminal=terminal,
                mask=mask,
                agent_info=agent_info,
                env_info=env_info,
            )
        self.terminate_episode()

    def add_paths(self, paths):
        for path in paths:
            self.add_path(path)

    @abc.abstractmethod
    def random_batch(self, batch_size):
        """
        Return a batch of size `batch_size`.
        :param batch_size:
        :return:
        """
        pass

    def get_diagnostics(self):
        return {}

    def get_snapshot(self):
        return {}

    def end_epoch(self, epoch):
        return