File size: 16,221 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import copy
import random
import warnings

import torch

import cv2
import numpy as np
from gym.spaces import Box, Dict
import rlkit.torch.pytorch_util as ptu
from multiworld.core.multitask_env import MultitaskEnv
from multiworld.envs.env_util import get_stat_in_paths, create_stats_ordered_dict
from rlkit.envs.wrappers import ProxyEnv


class VAEWrappedEnv(ProxyEnv, MultitaskEnv):
    """This class wraps an image-based environment with a VAE.
    Assumes you get flattened (channels,84,84) observations from wrapped_env.
    This class adheres to the "Silent Multitask Env" semantics: on reset,
    it resamples a goal.
    """
    def __init__(
        self,
        wrapped_env,
        vae,
        vae_input_key_prefix='image',
        sample_from_true_prior=False,
        decode_goals=False,
        render_goals=False,
        render_rollouts=False,
        reward_params=None,
        goal_sampling_mode="vae_prior",
        imsize=84,
        obs_size=None,
        norm_order=2,
        epsilon=20,
        presampled_goals=None,
    ):
        if reward_params is None:
            reward_params = dict()
        super().__init__(wrapped_env)
        self.vae = vae
        self.representation_size = self.vae.representation_size
        self.input_channels = self.vae.input_channels
        self.sample_from_true_prior = sample_from_true_prior
        self._decode_goals = decode_goals
        self.render_goals = render_goals
        self.render_rollouts = render_rollouts
        self.default_kwargs=dict(
            decode_goals=decode_goals,
            render_goals=render_goals,
            render_rollouts=render_rollouts,
        )
        self.imsize = imsize
        self.reward_params = reward_params
        self.reward_type = self.reward_params.get("type", 'latent_distance')
        self.norm_order = self.reward_params.get("norm_order", norm_order)
        self.epsilon = self.reward_params.get("epsilon", epsilon)
        self.reward_min_variance = self.reward_params.get("min_variance", 0)
        latent_space = Box(
            -10 * np.ones(obs_size or self.representation_size),
            10 * np.ones(obs_size or self.representation_size),
            dtype=np.float32,
        )
        spaces = self.wrapped_env.observation_space.spaces
        spaces['observation'] = latent_space
        spaces['desired_goal'] = latent_space
        spaces['achieved_goal'] = latent_space
        spaces['latent_observation'] = latent_space
        spaces['latent_desired_goal'] = latent_space
        spaces['latent_achieved_goal'] = latent_space
        self.observation_space = Dict(spaces)
        self._presampled_goals = presampled_goals
        if self._presampled_goals is None:
            self.num_goals_presampled = 0
        else:
            self.num_goals_presampled = presampled_goals[random.choice(list(presampled_goals))].shape[0]

        self.vae_input_key_prefix = vae_input_key_prefix
        assert vae_input_key_prefix in {'image', 'image_proprio'}
        self.vae_input_observation_key = vae_input_key_prefix + '_observation'
        self.vae_input_achieved_goal_key = vae_input_key_prefix + '_achieved_goal'
        self.vae_input_desired_goal_key = vae_input_key_prefix + '_desired_goal'
        self._mode_map = {}
        self.desired_goal = {'latent_desired_goal': latent_space.sample()}
        self._initial_obs = None
        self._custom_goal_sampler = None
        self._goal_sampling_mode = goal_sampling_mode


    def reset(self):
        obs = self.wrapped_env.reset()
        goal = self.sample_goal()
        self.set_goal(goal)
        self._initial_obs = obs
        return self._update_obs(obs)

    def step(self, action):
        obs, reward, done, info = self.wrapped_env.step(action)
        new_obs = self._update_obs(obs)
        self._update_info(info, new_obs)
        reward = self.compute_reward(
            action,
            {'latent_achieved_goal': new_obs['latent_achieved_goal'],
             'latent_desired_goal': new_obs['latent_desired_goal']}
        )
        self.try_render(new_obs)
        return new_obs, reward, done, info

    def _update_obs(self, obs):
        latent_obs = self._encode_one(obs[self.vae_input_observation_key])
        obs['latent_observation'] = latent_obs
        obs['latent_achieved_goal'] = latent_obs
        obs['observation'] = latent_obs
        obs['achieved_goal'] = latent_obs
        obs = {**obs, **self.desired_goal}
        return obs

    def _update_info(self, info, obs):
        latent_distribution_params = self.vae.encode(
            ptu.from_numpy(obs[self.vae_input_observation_key].reshape(1,-1))
        )
        latent_obs, logvar = ptu.get_numpy(latent_distribution_params[0])[0], ptu.get_numpy(latent_distribution_params[1])[0]
        # assert (latent_obs == obs['latent_observation']).all()
        latent_goal = self.desired_goal['latent_desired_goal']
        dist = latent_goal - latent_obs
        var = np.exp(logvar.flatten())
        var = np.maximum(var, self.reward_min_variance)
        err = dist * dist / 2 / var
        mdist = np.sum(err)  # mahalanobis distance
        info["vae_mdist"] = mdist
        info["vae_success"] = 1 if mdist < self.epsilon else 0
        info["vae_dist"] = np.linalg.norm(dist, ord=self.norm_order)
        info["vae_dist_l1"] = np.linalg.norm(dist, ord=1)
        info["vae_dist_l2"] = np.linalg.norm(dist, ord=2)

    """
    Multitask functions
    """
    def sample_goals(self, batch_size):
        # TODO: make mode a parameter you pass in
        if self._goal_sampling_mode == 'custom_goal_sampler':
            return self.custom_goal_sampler(batch_size)
        elif self._goal_sampling_mode == 'presampled':
            idx = np.random.randint(0, self.num_goals_presampled, batch_size)
            sampled_goals = {
                k: v[idx] for k, v in self._presampled_goals.items()
            }
            # ensures goals are encoded using latest vae
            if 'image_desired_goal' in sampled_goals:
                sampled_goals['latent_desired_goal'] = self._encode(sampled_goals['image_desired_goal'])
            return sampled_goals
        elif self._goal_sampling_mode == 'env':
            goals = self.wrapped_env.sample_goals(batch_size)
            latent_goals = self._encode(goals[self.vae_input_desired_goal_key])
        elif self._goal_sampling_mode == 'reset_of_env':
            assert batch_size == 1
            goal = self.wrapped_env.get_goal()
            goals = {k: v[None] for k, v in goal.items()}
            latent_goals = self._encode(
                goals[self.vae_input_desired_goal_key]
            )
        elif self._goal_sampling_mode == 'vae_prior':
            goals = {}
            latent_goals = self._sample_vae_prior(batch_size)
        else:
            raise RuntimeError("Invalid: {}".format(self._goal_sampling_mode))

        if self._decode_goals:
            decoded_goals = self._decode(latent_goals)
        else:
            decoded_goals = None
        image_goals, proprio_goals = self._image_and_proprio_from_decoded(
            decoded_goals
        )

        goals['desired_goal'] = latent_goals
        goals['latent_desired_goal'] = latent_goals
        if proprio_goals is not None:
            goals['proprio_desired_goal'] = proprio_goals
        if image_goals is not None:
            goals['image_desired_goal'] = image_goals
        if decoded_goals is not None:
            goals[self.vae_input_desired_goal_key] = decoded_goals
        return goals

    def get_goal(self):
        return self.desired_goal

    def compute_reward(self, action, obs):
        actions = action[None]
        next_obs = {
            k: v[None] for k, v in obs.items()
        }
        return self.compute_rewards(actions, next_obs)[0]

    def compute_rewards(self, actions, obs):
        # TODO: implement log_prob/mdist
        if self.reward_type == 'latent_distance':
            achieved_goals = obs['latent_achieved_goal']
            desired_goals = obs['latent_desired_goal']
            dist = np.linalg.norm(desired_goals - achieved_goals, ord=self.norm_order, axis=1)
            return -dist
        elif self.reward_type == 'vectorized_latent_distance':
            achieved_goals = obs['latent_achieved_goal']
            desired_goals = obs['latent_desired_goal']
            return -np.abs(desired_goals - achieved_goals)
        elif self.reward_type == 'latent_sparse':
            achieved_goals = obs['latent_achieved_goal']
            desired_goals = obs['latent_desired_goal']
            dist = np.linalg.norm(desired_goals - achieved_goals, ord=self.norm_order, axis=1)
            reward = 0 if dist < self.epsilon else -1
            return reward
        elif self.reward_type == 'state_distance':
            achieved_goals = obs['state_achieved_goal']
            desired_goals = obs['state_desired_goal']
            return - np.linalg.norm(desired_goals - achieved_goals, ord=self.norm_order, axis=1)
        elif self.reward_type == 'wrapped_env':
            return self.wrapped_env.compute_rewards(actions, obs)
        else:
            raise NotImplementedError

    @property
    def goal_dim(self):
        return self.representation_size

    def set_goal(self, goal):
        """
        Assume goal contains both image_desired_goal and any goals required for wrapped envs

        :param goal:
        :return:
        """
        self.desired_goal = goal
        # TODO: fix this hack / document this
        if self._goal_sampling_mode in {'presampled', 'env'}:
            self.wrapped_env.set_goal(goal)

    def get_diagnostics(self, paths, **kwargs):
        statistics = self.wrapped_env.get_diagnostics(paths, **kwargs)
        for stat_name_in_paths in ["vae_mdist", "vae_success", "vae_dist"]:
            stats = get_stat_in_paths(paths, 'env_infos', stat_name_in_paths)
            statistics.update(create_stats_ordered_dict(
                stat_name_in_paths,
                stats,
                always_show_all_stats=True,
            ))
            final_stats = [s[-1] for s in stats]
            statistics.update(create_stats_ordered_dict(
                "Final " + stat_name_in_paths,
                final_stats,
                always_show_all_stats=True,
            ))
        return statistics

    """
    Other functions
    """
    @property
    def goal_sampling_mode(self):
        return self._goal_sampling_mode

    @goal_sampling_mode.setter
    def goal_sampling_mode(self, mode):
        assert mode in [
            'custom_goal_sampler',
            'presampled',
            'vae_prior',
            'env',
            'reset_of_env'
        ], "Invalid env mode"
        self._goal_sampling_mode = mode
        if mode == 'custom_goal_sampler':
            test_goals = self.custom_goal_sampler(1)
            if test_goals is None:
                self._goal_sampling_mode = 'vae_prior'
                warnings.warn(
                    "self.goal_sampler returned None. " + \
                    "Defaulting to vae_prior goal sampling mode"
                )

    @property
    def custom_goal_sampler(self):
        return self._custom_goal_sampler

    @custom_goal_sampler.setter
    def custom_goal_sampler(self, new_custom_goal_sampler):
        assert self.custom_goal_sampler is None, (
            "Cannot override custom goal setter"
        )
        self._custom_goal_sampler = new_custom_goal_sampler

    @property
    def decode_goals(self):
        return self._decode_goals

    @decode_goals.setter
    def decode_goals(self, _decode_goals):
        self._decode_goals = _decode_goals

    def get_env_update(self):
        """
        For online-parallel. Gets updates to the environment since the last time
        the env was serialized.

        subprocess_env.update_env(**env.get_env_update())
        """
        return dict(
            mode_map=self._mode_map,
            gpu_info=dict(
                use_gpu=ptu._use_gpu,
                gpu_id=ptu._gpu_id,
            ),
            vae_state=self.vae.__getstate__(),
        )

    def update_env(self, mode_map, vae_state, gpu_info):
        self._mode_map = mode_map
        self.vae.__setstate__(vae_state)
        gpu_id = gpu_info['gpu_id']
        use_gpu = gpu_info['use_gpu']
        ptu.device = torch.device("cuda:" + str(gpu_id) if use_gpu else "cpu")
        self.vae.to(ptu.device)

    def enable_render(self):
        self._decode_goals = True
        self.render_goals = True
        self.render_rollouts = True

    def disable_render(self):
        self._decode_goals = False
        self.render_goals = False
        self.render_rollouts = False

    def try_render(self, obs):
        if self.render_rollouts:
            img = obs['image_observation'].reshape(
                self.input_channels,
                self.imsize,
                self.imsize,
            ).transpose()
            cv2.imshow('env', img)
            cv2.waitKey(1)
            reconstruction = self._reconstruct_img(obs['image_observation']).transpose()
            cv2.imshow('env_reconstruction', reconstruction)
            cv2.waitKey(1)
            init_img = self._initial_obs['image_observation'].reshape(
                self.input_channels,
                self.imsize,
                self.imsize,
            ).transpose()
            cv2.imshow('initial_state', init_img)
            cv2.waitKey(1)
            init_reconstruction = self._reconstruct_img(
                self._initial_obs['image_observation']
            ).transpose()
            cv2.imshow('init_reconstruction', init_reconstruction)
            cv2.waitKey(1)

        if self.render_goals:
            goal = obs['image_desired_goal'].reshape(
                self.input_channels,
                self.imsize,
                self.imsize,
            ).transpose()
            cv2.imshow('goal', goal)
            cv2.waitKey(1)

    def _sample_vae_prior(self, batch_size):
        if self.sample_from_true_prior:
            mu, sigma = 0, 1  # sample from prior
        else:
            mu, sigma = self.vae.dist_mu, self.vae.dist_std
        n = np.random.randn(batch_size, self.representation_size)
        return sigma * n + mu

    def _decode(self, latents):
        reconstructions, _ = self.vae.decode(ptu.from_numpy(latents))
        decoded = ptu.get_numpy(reconstructions)
        return decoded

    def _encode_one(self, img):
        return self._encode(img[None])[0]

    def _encode(self, imgs):
        latent_distribution_params = self.vae.encode(ptu.from_numpy(imgs))
        return ptu.get_numpy(latent_distribution_params[0])

    def _reconstruct_img(self, flat_img):
        latent_distribution_params = self.vae.encode(ptu.from_numpy(flat_img.reshape(1,-1)))
        reconstructions, _ = self.vae.decode(latent_distribution_params[0])
        imgs = ptu.get_numpy(reconstructions)
        imgs = imgs.reshape(
            1, self.input_channels, self.imsize, self.imsize
        )
        return imgs[0]

    def _image_and_proprio_from_decoded(self, decoded):
        if decoded is None:
            return None, None
        if self.vae_input_key_prefix == 'image_proprio':
            images = decoded[:, :self.image_length]
            proprio = decoded[:, self.image_length:]
            return images, proprio
        elif self.vae_input_key_prefix == 'image':
            return decoded, None
        else:
            raise AssertionError("Bad prefix for the vae input key.")

    def __getstate__(self):
        state = super().__getstate__()
        state = copy.copy(state)
        state['_custom_goal_sampler'] = None
        warnings.warn('VAEWrapperEnv.custom_goal_sampler is not saved.')
        return state

    def __setstate__(self, state):
        warnings.warn('VAEWrapperEnv.custom_goal_sampler was not loaded.')
        super().__setstate__(state)


def temporary_mode(env, mode, func, args=None, kwargs=None):
    if args is None:
        args = []
    if kwargs is None:
        kwargs = {}
    cur_mode = env.cur_mode
    env.mode(env._mode_map[mode])
    return_val = func(*args, **kwargs)
    env.mode(cur_mode)
    return return_val