Spaces:
Sleeping
Sleeping
File size: 7,092 Bytes
eaf2e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
"""
Custom hyperparameter functions.
"""
import abc
import copy
import math
import random
import itertools
from typing import List
import rlkit.pythonplusplus as ppp
class Hyperparameter(metaclass=abc.ABCMeta):
def __init__(self, name):
self._name = name
@property
def name(self):
return self._name
class RandomHyperparameter(Hyperparameter):
def __init__(self, name):
super().__init__(name)
self._last_value = None
@abc.abstractmethod
def generate_next_value(self):
"""Return a value for the hyperparameter"""
return
def generate(self):
self._last_value = self.generate_next_value()
return self._last_value
class EnumParam(RandomHyperparameter):
def __init__(self, name, possible_values):
super().__init__(name)
self.possible_values = possible_values
def generate_next_value(self):
return random.choice(self.possible_values)
class LogFloatParam(RandomHyperparameter):
"""
Return something ranging from [min_value + offset, max_value + offset],
distributed with a log.
"""
def __init__(self, name, min_value, max_value, *, offset=0):
super(LogFloatParam, self).__init__(name)
self._linear_float_param = LinearFloatParam("log_" + name,
math.log(min_value),
math.log(max_value))
self.offset = offset
def generate_next_value(self):
return math.e ** (self._linear_float_param.generate()) + self.offset
class LinearFloatParam(RandomHyperparameter):
def __init__(self, name, min_value, max_value):
super(LinearFloatParam, self).__init__(name)
self._min = min_value
self._delta = max_value - min_value
def generate_next_value(self):
return random.random() * self._delta + self._min
class LogIntParam(RandomHyperparameter):
def __init__(self, name, min_value, max_value, *, offset=0):
super().__init__(name)
self._linear_float_param = LinearFloatParam("log_" + name,
math.log(min_value),
math.log(max_value))
self.offset = offset
def generate_next_value(self):
return int(
math.e ** (self._linear_float_param.generate()) + self.offset
)
class LinearIntParam(RandomHyperparameter):
def __init__(self, name, min_value, max_value):
super(LinearIntParam, self).__init__(name)
self._min = min_value
self._max = max_value
def generate_next_value(self):
return random.randint(self._min, self._max)
class FixedParam(RandomHyperparameter):
def __init__(self, name, value):
super().__init__(name)
self._value = value
def generate_next_value(self):
return self._value
class Sweeper(object):
pass
class RandomHyperparameterSweeper(Sweeper):
def __init__(self, hyperparameters=None, default_kwargs=None):
if default_kwargs is None:
default_kwargs = {}
self._hyperparameters = hyperparameters or []
self._validate_hyperparameters()
self._default_kwargs = default_kwargs
def _validate_hyperparameters(self):
names = set()
for hp in self._hyperparameters:
name = hp.name
if name in names:
raise Exception("Hyperparameter '{0}' already added.".format(
name))
names.add(name)
def set_default_parameters(self, default_kwargs):
self._default_kwargs = default_kwargs
def generate_random_hyperparameters(self):
hyperparameters = {}
for hp in self._hyperparameters:
hyperparameters[hp.name] = hp.generate()
hyperparameters = ppp.dot_map_dict_to_nested_dict(hyperparameters)
return ppp.merge_recursive_dicts(
hyperparameters,
copy.deepcopy(self._default_kwargs),
ignore_duplicate_keys_in_second_dict=True,
)
def sweep_hyperparameters(self, function, num_configs):
returned_value_and_params = []
for _ in range(num_configs):
kwargs = self.generate_random_hyperparameters()
score = function(**kwargs)
returned_value_and_params.append((score, kwargs))
return returned_value_and_params
class DeterministicHyperparameterSweeper(Sweeper):
"""
Do a grid search over hyperparameters based on a predefined set of
hyperparameters.
"""
def __init__(self, hyperparameters, default_parameters=None):
"""
:param hyperparameters: A dictionary of the form
```
{
'hp_1': [value1, value2, value3],
'hp_2': [value1, value2, value3],
...
}
```
This format is like the param_grid in SciKit-Learn:
http://scikit-learn.org/stable/modules/grid_search.html#exhaustive-grid-search
:param default_parameters: Default key-value pairs to add to the
dictionary.
"""
self._hyperparameters = hyperparameters
self._default_kwargs = default_parameters or {}
named_hyperparameters = []
for name, values in self._hyperparameters.items():
named_hyperparameters.append(
[(name, v) for v in values]
)
self._hyperparameters_dicts = [
ppp.dot_map_dict_to_nested_dict(dict(tuple_list))
for tuple_list in itertools.product(*named_hyperparameters)
]
def iterate_hyperparameters(self):
"""
Iterate over the hyperparameters in a grid-manner.
:return: List of dictionaries. Each dictionary is a map from name to
hyperpameter.
"""
return [
ppp.merge_recursive_dicts(
hyperparameters,
copy.deepcopy(self._default_kwargs),
ignore_duplicate_keys_in_second_dict=True,
)
for hyperparameters in self._hyperparameters_dicts
]
# TODO(vpong): Test this
class DeterministicSweeperCombiner(object):
"""
A simple wrapper to combiner multiple DeterministicHyperParameterSweeper's
"""
def __init__(self, sweepers: List[DeterministicHyperparameterSweeper]):
self._sweepers = sweepers
def iterate_list_of_hyperparameters(self):
"""
Usage:
```
sweeper1 = DeterministicHyperparameterSweeper(...)
sweeper2 = DeterministicHyperparameterSweeper(...)
combiner = DeterministicSweeperCombiner([sweeper1, sweeper2])
for params_1, params_2 in combiner.iterate_list_of_hyperparameters():
# param_1 = {...}
# param_2 = {...}
```
:return: Generator of hyperparameters, in the same order as provided
sweepers.
"""
return itertools.product(
sweeper.iterate_hyperparameters()
for sweeper in self._sweepers
) |