File size: 6,012 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import math

import torch
from torch import nn
from torch.optim.optimizer import Optimizer


###### Borrowed from https://github.com/heykeetae/Self-Attention-GAN/blob/master/sagan_models.py ######
class SelfAttn(nn.Module):
    """ Self attention Layer"""

    def __init__(self, in_dim):
        super(SelfAttn, self).__init__()
        self.chanel_in = in_dim
        # self.activation = activation

        self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
        self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
        self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.gamma = nn.Parameter(torch.zeros(1))
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
        """
            inputs :
                x : input feature maps(B X C X W X H)
            returns :
                out : self attention value + input feature
                attention: B X N X N (N is Width*Height)
        """
        m_batchsize, C, width, height = x.size()
        proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1)  # B X CX(N)
        proj_key = self.key_conv(x).view(m_batchsize, -1, width * height)  # B X C x (*W*H)
        energy = torch.bmm(proj_query, proj_key)  # transpose check
        attention = self.softmax(energy)  # BX (N) X (N)
        proj_value = self.value_conv(x).view(m_batchsize, -1, width * height)  # B X C X N

        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(m_batchsize, C, width, height)

        out = self.gamma * out + x
        return out
        # return out, attention
#######################################################################################################

class DenseNeck(nn.Module):
    def __init__(self, n_channels, growth):
        super().__init__()
        self.main = nn.Sequential(
            nn.BatchNorm2d(n_channels),
            nn.Conv2d(n_channels, growth * 4, 1, bias=False),
            nn.BatchNorm2d(growth * 4),
            nn.Conv2d(growth * 4, growth, 3, padding=1, bias=False),
        )

    def forward(self, x):
        return torch.cat((x, self.main(x)), -3)

class DenseTransition(nn.Module):
    def __init__(self, channels, reduction=0.5):
        super().__init__()
        self.main = nn.Sequential(
            nn.BatchNorm2d(channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(channels, int(channels * reduction), kernel_size=1, bias=False),
            nn.AvgPool2d(kernel_size=2, stride=2)
        )

    def forward(self, x):
        return self.main(x)


class DenseBlock(nn.Module):
    def __init__(self, n_channels, n=8, growth=16):
        super().__init__()
        layers = []
        for i in range(n):
            layers.append(DenseNeck(n_channels, growth))
            n_channels += growth
            pass
        self.main = nn.Sequential(*layers)

    def forward(self, x):
        return self.main(x)


#######################################################################################################


class Lion(Optimizer):
    r"""Implements Lion algorithm."""
    def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0):
        """Initialize the hyperparameters.
        Args:
            params (iterable): iterable of parameters to optimize or dicts defining parameter groups
            lr (float): learning rate (default: 1e-4)
            betas (Tuple[float, float]): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.99))
            weight_decay (float): weight decay (L2 penalty) (default: 0)
        """
        defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
        super(Lion, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(Lion, self).__setstate__(state)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.
        Args:
            closure (callable): A closure that reevaluates the model and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad
                if grad.is_sparse:
                    raise RuntimeError('Lion does not support sparse gradients')
                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p.data)
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                # Get hyperparameters
                lr = group['lr']
                beta1, beta2 = group['betas']
                weight_decay = group['weight_decay']

                # Update biased first moment estimate
                state['step'] += 1
                exp_avg = state['exp_avg']
                exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)

                # Update biased second raw moment estimate
                exp_avg_sq = state['exp_avg_sq']
                exp_avg_sq.mul_(beta2).addcmul_(grad - exp_avg, grad - exp_avg, value=1 - beta2)

                # Compute the bias-corrected first and second moment estimates
                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']
                denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
                step_size = lr / bias_correction1

                # Update parameters
                p.addcdiv_(exp_avg, denom, value=-step_size)

                # Weight decay
                if weight_decay != 0:
                    p.data.add_(p.data, alpha=-weight_decay * lr)

        return loss