Spaces:
Sleeping
Sleeping
File size: 9,072 Bytes
eaf2e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import logging
# from tqdm import tqdm
# from torch.utils.tensorboard import SummaryWriter
from src.ddpm.diffusion import Diffusion
from src.ddpm.modules import UNet
# from pytorch_model_summary import summary
# from matplotlib import pyplot as plt
from src.ddpm.dataset import create_dataloader
# from utils.plot import get_img_from_level
from pathlib import Path
# from src.smb.level import MarioLevel
import argparse
import datetime
from src.gan.gankits import process_onehot, get_decoder
from src.smb.level import MarioLevel, lvlhcat, save_batch
from src.utils.filesys import getpath
from src.utils.img import make_img_sheet
# sprite_counts = np.power(np.array([102573, 9114, 1017889, 930, 3032, 7330, 2278, 2279, 5227, 5229, 5419]), 1/4)
sprite_counts = np.power(np.array([
74977, 15252, 572591, 5826, 1216, 7302, 237, 237, 2852, 1074, 235, 304, 48, 96, 160, 1871, 936, 186, 428, 80, 428
]), 1/4
)
min_count = np.min(sprite_counts)
# filepath = Path(__file__).parent.resolve()
# DATA_PATH = os.path.join(filepath, "levels", "ground", "unique_onehot.npz")
def setup_logging(run_name, beta_schedule):
model_path = os.path.join("models", beta_schedule, run_name)
result_path = os.path.join("results", beta_schedule, run_name)
os.makedirs(model_path, exist_ok=True)
os.makedirs(result_path, exist_ok=True)
return model_path, result_path
# def plot_images(epoch, sampled_images, result_path):
# fig = plt.figure(figsize=(30, 15))
# for i in range(len(sampled_images)):
# ax1 = fig.add_subplot(4, int(len(sampled_images)/4), i+1)
# ax1.tick_params(left=False, right=False, labelleft=False, labelbottom=False, bottom=False)
# level = sampled_images[i].argmax(dim=0).cpu().numpy()
# level_img = get_img_from_level(level)
# ax1.imshow(level_img)
# plt.savefig(os.path.join(result_path, f"{epoch:04d}_sample.png"))
# plt.close()
# def plot_training_images(epoch, original_img, x_t, noise, predicted_noise, reconstructed_img, training_result_path):
# fig = plt.figure(figsize=(15, 10))
# for i in range(2):
# ax1 = fig.add_subplot(2, 5, i*5+1)
# ax1.imshow(get_img_from_level(original_img[i].cpu().numpy()))
# ax1.set_title(f"Original {i}")
# ax2 = fig.add_subplot(2, 5, i*5+2)
# ax2.imshow(get_img_from_level(noise[i].cpu().numpy()))
# ax2.set_title(f"Noise {i}")
# ax3 = fig.add_subplot(2, 5, i*5+3)
# ax3.imshow(get_img_from_level(x_t.argmax(dim=1).cpu().numpy()[i]))
# ax3.set_title(f"x_t {i}")
# ax4 = fig.add_subplot(2, 5, i*5+4)
# ax4.imshow(get_img_from_level(predicted_noise[i].cpu().numpy()))
# ax4.set_title(f"Predicted Noise {i}")
# ax5 = fig.add_subplot(2, 5, i*5+5)
# ax5.imshow(get_img_from_level(reconstructed_img.probs.argmax(dim=-1).cpu().numpy()[i]))
# ax5.set_title(f"Reconstructed Image {i}")
# plt.savefig(os.path.join(training_result_path, f"{epoch:04d}.png"))
# plt.close()
def train(args):
# model_path, result_path = setup_logging(args.run_name, args.beta_schedule)
# training_result_path = os.path.join(result_path, "training")
path = getpath(args.res_path)
os.makedirs(path, exist_ok=True)
dataloader = create_dataloader(batch_size=args.batch_size, shuffle=True, num_workers=0)
device = 'cpu' if args.gpuid < 0 else f'cuda:{args.gpuid}'
model = UNet().to(device)
optimizer = optim.AdamW(model.parameters(), lr=args.lr)
mse = nn.MSELoss()
diffusion = Diffusion(device=device, schedule=args.beta_schedule)
# logger = SummaryWriter(os.path.join("logs", args.beta_schedule, args.run_name))
temperatures = torch.tensor(min_count / sprite_counts, dtype=torch.float32).to(device)
l = len(dataloader)
# print(summary(model, torch.zeros((64, MarioLevel.n_types, 14, 14)).to(device), diffusion.sample_timesteps(64).to(device), show_input=True))
# if args.resume_from != 0:
# checkpoint = torch.load(os.path.join(model_path, f'ckpt_{args.resume_from}'))
# model.load_state_dict(checkpoint['model_state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
for epoch in range(args.resume_from+1, args.resume_from+args.epochs+1):
logging.info(f"Starting epoch {epoch}:")
epoch_loss = {'rec_loss': 0, 'mse': 0, 'loss': 0}
# pbar = tqdm(dataloader)
for i, images in enumerate(dataloader):
images = images.to(device)
# print(images.shape)
t = diffusion.sample_timesteps(images.shape[0]).to(device) # random int from 1~1000
x_t, noise = diffusion.noise_images(images, t) # x_t: image with noise at t, noise: gaussian noise
predicted_noise = model(x_t.float(), t.float()) # returns predicted noise eps_theta
original_img = images.argmax(dim=1) # batch x 14 x 14
reconstructed_img = diffusion.sample_only_final(x_t, t, predicted_noise, temperatures)
rec_loss = -reconstructed_img.log_prob(original_img).sum(dim=(1,2)).mean() # batch
mse_loss = mse(noise.float(), predicted_noise.float())
loss = 0.001 * rec_loss + mse_loss
epoch_loss['rec_loss'] += rec_loss.item()
epoch_loss['mse'] += mse_loss.item()
epoch_loss['loss'] += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# pbar.set_postfix(LOSS=loss.item())
# logger.add_scalar("Rec_loss", rec_loss.item(), global_step=(epoch - 1) * l + i)
# logger.add_scalar("MSE", mse_loss.item(), global_step=(epoch - 1) * l + i)
# logger.add_scalar("LOSS", loss.item(), global_step=(epoch - 1) * l + i)
# logger.add_scalar("Epoch_Rec_loss", epoch_loss['rec_loss']/l, global_step=epoch)
# logger.add_scalar("Epoch_MSE", epoch_loss['mse']/l, global_step=epoch)
# logger.add_scalar("Epoch_LOSS", epoch_loss['loss']/l, global_step=epoch)
print(
'\nIteration: %d' % epoch,
'rec_loss: %.5g' % (epoch_loss['rec_loss']/l),
'mse: %.5g' % (epoch_loss['mse']/l)
)
# if epoch % 20 == 19:
# sampled_images = diffusion.sample(model, n=50)
# imgs = [lvl.to_img() for lvl in process_onehot(sampled_images[-1])]
# make_img_sheet(imgs, 10, save_path=f'{args.res_path}/sample{epoch+1}.png')
# plot_images(epoch, sampled_images[-1], result_path)
# plot_training_images(epoch, original_img, x_t, noise.argmax(dim=1), predicted_noise.argmax(dim=1), reconstructed_img, training_result_path)
if epoch % 1000 == 0:
# torch.save(model.state_dict(), os.path.join(model_path, f"ckpt_{epoch:04d}.pt"))
# torch.save({
# 'epoch': epoch,
# 'model_state_dict': model.state_dict(),
# 'optimizer_state_dict': optimizer.state_dict(),
# 'Epoch_Rec_loss': epoch_loss['rec_loss']/l,
# 'Epoch_MSE': epoch_loss['mse']/l,
# 'Epoch_LOSS': epoch_loss['loss']/l
# }, getpath(f"{args.res_path}/ddpm_{epoch}.pt"))
itpath = getpath(path, f'it{epoch}')
os.makedirs(itpath, exist_ok=True)
model.save(getpath(path, itpath, 'ddpm.pth'))
lvls = []
init_lateves = torch.tensor(np.load(getpath('analysis/initial_seg.npy')))
gan = get_decoder()
init_seg_onhots = gan(torch.tensor(init_lateves).view(*init_lateves.shape, 1, 1))
i = 0
for init_seg_onehot in init_seg_onhots:
seg_onehots = diffusion.sample(model, n=25)[-1]
a = init_seg_onehot.view(1, *init_seg_onehot.shape)
b = seg_onehots.detach().cpu()
print(a.shape, b.shape)
segs = process_onehot(torch.cat([a, b], dim=0))
level = lvlhcat(segs)
lvls.append(level)
save_batch(lvls, getpath(path, 'samples.lvls'))
model.save(getpath(path, 'ddpm.pth'))
def launch():
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=10000)
# parser.add_argument("--data_path", type=str, default=DATA_PATH)
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--res_path", type=str, default='exp_data/DDPM')
# parser.add_argument("--image_size", type=int, default=14)
# parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--gpuid", type=int, default=0)
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--beta_schedule", type=str, default="quadratic", choices=['linear', 'quadratic', 'sigmoid'])
parser.add_argument("--run_name", type=str, default=f"{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}")
parser.add_argument("--resume_from", type=int, default=0)
args = parser.parse_args()
train(args)
if __name__ == "__main__":
launch()
|