File size: 9,072 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import logging
# from tqdm import tqdm
# from torch.utils.tensorboard import SummaryWriter
from src.ddpm.diffusion import Diffusion
from src.ddpm.modules import UNet
# from pytorch_model_summary import summary
# from matplotlib import pyplot as plt
from src.ddpm.dataset import create_dataloader
# from utils.plot import get_img_from_level
from pathlib import Path
# from src.smb.level import MarioLevel
import argparse
import datetime

from src.gan.gankits import process_onehot, get_decoder
from src.smb.level import MarioLevel, lvlhcat, save_batch
from src.utils.filesys import getpath
from src.utils.img import make_img_sheet

# sprite_counts = np.power(np.array([102573, 9114, 1017889, 930, 3032, 7330, 2278, 2279, 5227, 5229, 5419]), 1/4)
sprite_counts = np.power(np.array([
        74977, 15252, 572591, 5826, 1216, 7302, 237, 237, 2852, 1074, 235, 304, 48, 96, 160, 1871, 936, 186, 428, 80, 428
    ]), 1/4
)
min_count = np.min(sprite_counts)

# filepath = Path(__file__).parent.resolve()
# DATA_PATH = os.path.join(filepath, "levels", "ground", "unique_onehot.npz")

def setup_logging(run_name, beta_schedule):
    model_path = os.path.join("models", beta_schedule, run_name)
    result_path = os.path.join("results", beta_schedule, run_name)
    os.makedirs(model_path, exist_ok=True)
    os.makedirs(result_path, exist_ok=True)
    return model_path, result_path

# def plot_images(epoch, sampled_images, result_path):
#     fig = plt.figure(figsize=(30, 15))
#     for i in range(len(sampled_images)):
#         ax1 = fig.add_subplot(4, int(len(sampled_images)/4), i+1)
#         ax1.tick_params(left=False, right=False, labelleft=False, labelbottom=False, bottom=False)
#         level = sampled_images[i].argmax(dim=0).cpu().numpy()
#         level_img = get_img_from_level(level)
#         ax1.imshow(level_img)
#     plt.savefig(os.path.join(result_path, f"{epoch:04d}_sample.png"))
#     plt.close()

# def plot_training_images(epoch, original_img, x_t, noise, predicted_noise, reconstructed_img, training_result_path):
#     fig = plt.figure(figsize=(15, 10))
#     for i in range(2):
#         ax1 = fig.add_subplot(2, 5, i*5+1)
#         ax1.imshow(get_img_from_level(original_img[i].cpu().numpy()))
#         ax1.set_title(f"Original {i}")
#         ax2 = fig.add_subplot(2, 5, i*5+2)
#         ax2.imshow(get_img_from_level(noise[i].cpu().numpy()))
#         ax2.set_title(f"Noise {i}")
#         ax3 = fig.add_subplot(2, 5, i*5+3)
#         ax3.imshow(get_img_from_level(x_t.argmax(dim=1).cpu().numpy()[i]))
#         ax3.set_title(f"x_t {i}")
#         ax4 = fig.add_subplot(2, 5, i*5+4)
#         ax4.imshow(get_img_from_level(predicted_noise[i].cpu().numpy()))
#         ax4.set_title(f"Predicted Noise {i}")
#         ax5 = fig.add_subplot(2, 5, i*5+5)
#         ax5.imshow(get_img_from_level(reconstructed_img.probs.argmax(dim=-1).cpu().numpy()[i]))
#         ax5.set_title(f"Reconstructed Image {i}")
#     plt.savefig(os.path.join(training_result_path, f"{epoch:04d}.png"))
#     plt.close()

def train(args):
    # model_path, result_path = setup_logging(args.run_name, args.beta_schedule)
    # training_result_path = os.path.join(result_path, "training")
    path = getpath(args.res_path)
    os.makedirs(path, exist_ok=True)

    dataloader = create_dataloader(batch_size=args.batch_size, shuffle=True, num_workers=0)
    device = 'cpu' if args.gpuid < 0 else f'cuda:{args.gpuid}'
    model = UNet().to(device)
    optimizer = optim.AdamW(model.parameters(), lr=args.lr)
    mse = nn.MSELoss()
    diffusion = Diffusion(device=device, schedule=args.beta_schedule)
    # logger = SummaryWriter(os.path.join("logs", args.beta_schedule, args.run_name))
    temperatures = torch.tensor(min_count / sprite_counts, dtype=torch.float32).to(device)
    l = len(dataloader)

    # print(summary(model, torch.zeros((64, MarioLevel.n_types, 14, 14)).to(device), diffusion.sample_timesteps(64).to(device), show_input=True))

    # if args.resume_from != 0:
    #     checkpoint = torch.load(os.path.join(model_path, f'ckpt_{args.resume_from}'))
    #     model.load_state_dict(checkpoint['model_state_dict'])
    #     optimizer.load_state_dict(checkpoint['optimizer_state_dict'])

    for epoch in range(args.resume_from+1, args.resume_from+args.epochs+1):
        logging.info(f"Starting epoch {epoch}:")
        epoch_loss = {'rec_loss': 0, 'mse': 0, 'loss': 0}
        # pbar = tqdm(dataloader)
        for i, images in enumerate(dataloader):
            images = images.to(device)
            # print(images.shape)
            t = diffusion.sample_timesteps(images.shape[0]).to(device)  # random int from 1~1000
            x_t, noise = diffusion.noise_images(images, t)  # x_t: image with noise at t, noise: gaussian noise
            predicted_noise = model(x_t.float(), t.float()) # returns predicted noise eps_theta

            original_img = images.argmax(dim=1) # batch x 14 x 14
            reconstructed_img = diffusion.sample_only_final(x_t, t, predicted_noise, temperatures)
            rec_loss = -reconstructed_img.log_prob(original_img).sum(dim=(1,2)).mean() # batch
            mse_loss = mse(noise.float(), predicted_noise.float())
            loss = 0.001 * rec_loss + mse_loss
            epoch_loss['rec_loss'] += rec_loss.item()
            epoch_loss['mse'] += mse_loss.item()
            epoch_loss['loss'] += loss.item()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # pbar.set_postfix(LOSS=loss.item())
            # logger.add_scalar("Rec_loss", rec_loss.item(), global_step=(epoch - 1) * l + i)
            # logger.add_scalar("MSE", mse_loss.item(), global_step=(epoch - 1) * l + i)
            # logger.add_scalar("LOSS", loss.item(), global_step=(epoch - 1) * l + i)

        # logger.add_scalar("Epoch_Rec_loss", epoch_loss['rec_loss']/l, global_step=epoch)
        # logger.add_scalar("Epoch_MSE", epoch_loss['mse']/l, global_step=epoch)
        # logger.add_scalar("Epoch_LOSS", epoch_loss['loss']/l, global_step=epoch)
        print(
            '\nIteration: %d' % epoch,
            'rec_loss: %.5g' % (epoch_loss['rec_loss']/l),
            'mse: %.5g' % (epoch_loss['mse']/l)
        )

        # if epoch % 20 == 19:
        #     sampled_images = diffusion.sample(model, n=50)
        #     imgs = [lvl.to_img() for lvl in process_onehot(sampled_images[-1])]
        #     make_img_sheet(imgs, 10, save_path=f'{args.res_path}/sample{epoch+1}.png')

        # plot_images(epoch, sampled_images[-1], result_path)
        # plot_training_images(epoch, original_img, x_t, noise.argmax(dim=1), predicted_noise.argmax(dim=1), reconstructed_img, training_result_path)

        if epoch % 1000 == 0:
            # torch.save(model.state_dict(), os.path.join(model_path, f"ckpt_{epoch:04d}.pt"))
            # torch.save({
            #     'epoch': epoch,
            #     'model_state_dict': model.state_dict(),
            #     'optimizer_state_dict': optimizer.state_dict(),
            #     'Epoch_Rec_loss': epoch_loss['rec_loss']/l,
            #     'Epoch_MSE': epoch_loss['mse']/l,
            #     'Epoch_LOSS': epoch_loss['loss']/l
            # }, getpath(f"{args.res_path}/ddpm_{epoch}.pt"))
            itpath = getpath(path, f'it{epoch}')
            os.makedirs(itpath, exist_ok=True)
            model.save(getpath(path, itpath, 'ddpm.pth'))


    lvls = []
    init_lateves = torch.tensor(np.load(getpath('analysis/initial_seg.npy')))
    gan = get_decoder()
    init_seg_onhots = gan(torch.tensor(init_lateves).view(*init_lateves.shape, 1, 1))
    i = 0
    for init_seg_onehot in init_seg_onhots:
        seg_onehots = diffusion.sample(model, n=25)[-1]
        a = init_seg_onehot.view(1, *init_seg_onehot.shape)
        b = seg_onehots.detach().cpu()
        print(a.shape, b.shape)
        segs = process_onehot(torch.cat([a, b], dim=0))
        level = lvlhcat(segs)
        lvls.append(level)
    save_batch(lvls, getpath(path, 'samples.lvls'))
    model.save(getpath(path, 'ddpm.pth'))

def launch():
    parser = argparse.ArgumentParser()
    parser.add_argument("--epochs", type=int, default=10000)
    # parser.add_argument("--data_path", type=str, default=DATA_PATH)
    parser.add_argument("--batch_size", type=int, default=256)
    parser.add_argument("--res_path", type=str, default='exp_data/DDPM')
    # parser.add_argument("--image_size", type=int, default=14)
    # parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--gpuid", type=int, default=0)
    parser.add_argument("--lr", type=float, default=3e-4)
    parser.add_argument("--beta_schedule", type=str, default="quadratic", choices=['linear', 'quadratic', 'sigmoid'])
    parser.add_argument("--run_name", type=str, default=f"{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}")
    parser.add_argument("--resume_from", type=int, default=0)
    args = parser.parse_args()
    train(args)

if __name__ == "__main__":
    launch()